An adaptive finite element multigrid solver using GPU acceleration

Manuel Liebchen, Utku Kaya, Christian Lessig, Thomas Richter
{"title":"An adaptive finite element multigrid solver using GPU acceleration","authors":"Manuel Liebchen, Utku Kaya, Christian Lessig, Thomas Richter","doi":"arxiv-2405.05047","DOIUrl":null,"url":null,"abstract":"Adaptive finite elements combined with geometric multigrid solvers are one of\nthe most efficient numerical methods for problems such as the instationary\nNavier-Stokes equations. Yet despite their efficiency, computations remain\nexpensive and the simulation of, for example, complex flow problems can take\nmany hours or days. GPUs provide an interesting avenue to speed up the\ncalculations due to their very large theoretical peak performance. However, the\nlarge degree of parallelism and non-standard API make the use of GPUs in\nscientific computing challenging. In this work, we develop a GPU acceleration\nfor the adaptive finite element library Gascoigne and study its effectiveness\nfor different systems of partial differential equations. Through the systematic\nformulation of all computations as linear algebra operations, we can employ\nGPU-accelerated linear algebra libraries, which simplifies the implementation\nand ensures the maintainability of the code while achieving very efficient GPU\nutilizations. Our results for a transport-diffusion equation, linear\nelasticity, and the instationary Navier-Stokes equations show substantial\nspeedups of up to 20X compared to multi-core CPU implementations.","PeriodicalId":501061,"journal":{"name":"arXiv - CS - Numerical Analysis","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Adaptive finite elements combined with geometric multigrid solvers are one of the most efficient numerical methods for problems such as the instationary Navier-Stokes equations. Yet despite their efficiency, computations remain expensive and the simulation of, for example, complex flow problems can take many hours or days. GPUs provide an interesting avenue to speed up the calculations due to their very large theoretical peak performance. However, the large degree of parallelism and non-standard API make the use of GPUs in scientific computing challenging. In this work, we develop a GPU acceleration for the adaptive finite element library Gascoigne and study its effectiveness for different systems of partial differential equations. Through the systematic formulation of all computations as linear algebra operations, we can employ GPU-accelerated linear algebra libraries, which simplifies the implementation and ensures the maintainability of the code while achieving very efficient GPU utilizations. Our results for a transport-diffusion equation, linear elasticity, and the instationary Navier-Stokes equations show substantial speedups of up to 20X compared to multi-core CPU implementations.
利用 GPU 加速的自适应有限元多网格求解器
自适应有限元与几何多网格求解器相结合,是解决纳维尔-斯托克斯方程等问题最有效的数值方法之一。然而,尽管效率很高,计算成本仍然很高,例如,复杂流动问题的模拟可能需要数小时或数天。GPU 的理论峰值性能非常高,为加快计算速度提供了一个有趣的途径。然而,GPU 的高度并行性和非标准 API 使其在科学计算中的应用面临挑战。在这项工作中,我们为自适应有限元库 Gascoigne 开发了 GPU 加速,并研究了其对不同偏微分方程系统的有效性。通过将所有计算系统地表述为线性代数运算,我们可以使用 GPU 加速的线性代数库,从而简化了实现过程并确保了代码的可维护性,同时实现了非常高效的 GPU 利用。我们对输运扩散方程、线弹性和固定纳维-斯托克斯方程的研究结果表明,与多核 CPU 实现相比,计算速度大幅提高了 20 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信