{"title":"Model prediction of unidirectional fiber-reinforced composites under finite deformation","authors":"Xing Lu, Jianhui Wei, Wei Zhao, Wenwu Zhang, Helezi Zhou, Zinan Liu, Xiongqi Peng, Zhigao Huang, Huamin Zhou","doi":"10.1177/07316844241252045","DOIUrl":null,"url":null,"abstract":"The intuitive knowledge is that the mechanical modulus of unidirectional fiber-reinforced composites (UD-FRPs) decreases with higher fiber orientation angles. However, numerical results in this work and experimental results in previous literature indicate that the mechanical response of UD-FRPs has a U-shaped dependence on fiber orientation angle. To explain this phenomenon, we develop an anisotropic model to capture the mechanical behavior of UD-FRPs. The strain energy is decomposed into four components: matrix, fiber, fiber-matrix normal, and shear interactions. Each component can be determined by matching the mechanical responses of unit cells with 0°, 45°, and 90° off-axis. The results obtained from the presented model match well with the numerical response of unit cells with 15°, 30°, 60°, and 75° off-axis. With an increasing fiber orientation angle, the matrix part remains unchanged, the fiber component decreases, but the fiber-matrix normal component increases, and the fiber-matrix shear component increases and then decreases. The change in strain energy contributions explains the mechanism of the U-shaped dependence of the mechanical response on fiber orientation angle.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"46 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241252045","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
The intuitive knowledge is that the mechanical modulus of unidirectional fiber-reinforced composites (UD-FRPs) decreases with higher fiber orientation angles. However, numerical results in this work and experimental results in previous literature indicate that the mechanical response of UD-FRPs has a U-shaped dependence on fiber orientation angle. To explain this phenomenon, we develop an anisotropic model to capture the mechanical behavior of UD-FRPs. The strain energy is decomposed into four components: matrix, fiber, fiber-matrix normal, and shear interactions. Each component can be determined by matching the mechanical responses of unit cells with 0°, 45°, and 90° off-axis. The results obtained from the presented model match well with the numerical response of unit cells with 15°, 30°, 60°, and 75° off-axis. With an increasing fiber orientation angle, the matrix part remains unchanged, the fiber component decreases, but the fiber-matrix normal component increases, and the fiber-matrix shear component increases and then decreases. The change in strain energy contributions explains the mechanism of the U-shaped dependence of the mechanical response on fiber orientation angle.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).