Observability and Effective Region of Partial Differential Equations with Application to Data Assimilation

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Wei Kang, Liang Xu, Hong Zhou
{"title":"Observability and Effective Region of Partial Differential Equations with Application to Data Assimilation","authors":"Wei Kang, Liang Xu, Hong Zhou","doi":"10.1137/23m1586690","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page C249-C271, June 2024. <br/> Abstract. In this work, we introduce a new definition of observability for dynamical systems, formulated on the principles of dynamic optimization. This definition gives rise to the concept of an effective region, specifically designed for partial differential equations (PDEs). The usefulness of these concepts is demonstrated through examples of state estimation using observational information for PDEs in a limited area. The findings empower a more efficient analysis of PDE observability. By confining computations to an effective region significantly smaller than the overall region in which the PDE is defined, we demonstrate a substantial reduction in computational demand of evaluating observability. As an application of observability and effective region, we propose a learning-based surrogate data assimilation (DA) model for efficient state estimation in a limited area. Our model employs a feedforward neural network for online computation, eliminating the need for integrating high-dimensional limited-area models. This approach offers significant computational advantages over traditional DA algorithms. Furthermore, our method avoids the requirement of lateral boundary conditions for the limited-area model in both online and offline computations.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1586690","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Journal on Scientific Computing, Volume 46, Issue 3, Page C249-C271, June 2024.
Abstract. In this work, we introduce a new definition of observability for dynamical systems, formulated on the principles of dynamic optimization. This definition gives rise to the concept of an effective region, specifically designed for partial differential equations (PDEs). The usefulness of these concepts is demonstrated through examples of state estimation using observational information for PDEs in a limited area. The findings empower a more efficient analysis of PDE observability. By confining computations to an effective region significantly smaller than the overall region in which the PDE is defined, we demonstrate a substantial reduction in computational demand of evaluating observability. As an application of observability and effective region, we propose a learning-based surrogate data assimilation (DA) model for efficient state estimation in a limited area. Our model employs a feedforward neural network for online computation, eliminating the need for integrating high-dimensional limited-area models. This approach offers significant computational advantages over traditional DA algorithms. Furthermore, our method avoids the requirement of lateral boundary conditions for the limited-area model in both online and offline computations.
偏微分方程的可观测性和有效区域及其在数据同化中的应用
SIAM 科学计算期刊》,第 46 卷第 3 期,第 C249-C271 页,2024 年 6 月。 摘要在这项工作中,我们根据动态优化原理,为动态系统引入了一个新的可观测性定义。该定义产生了专门针对偏微分方程 (PDE) 的有效区域的概念。这些概念的实用性通过在有限区域内利用偏微分方程的观测信息进行状态估计的例子得到了证明。这些发现使我们能够更有效地分析偏微分方程的可观测性。通过将计算限制在一个明显小于定义 PDE 的整个区域的有效区域内,我们证明了评估可观测性的计算需求大幅减少。作为可观测性和有效区域的一种应用,我们提出了一种基于学习的代用数据同化(DA)模型,用于在有限区域内进行高效的状态估计。我们的模型采用前馈神经网络进行在线计算,无需整合高维有限区域模型。与传统的数据归纳算法相比,这种方法具有显著的计算优势。此外,我们的方法还避免了在线和离线计算中对有限区域模型横向边界条件的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信