Iterative algorithm to the generalized coupled Sylvester‐transpose matrix equations with application in robust and minimum norm observer design of linear systems

Rui Qi, Caiqin Song
{"title":"Iterative algorithm to the generalized coupled Sylvester‐transpose matrix equations with application in robust and minimum norm observer design of linear systems","authors":"Rui Qi, Caiqin Song","doi":"10.1002/oca.3134","DOIUrl":null,"url":null,"abstract":"This article consider a class of generalized coupled Sylvester‐transpose matrix equations which play an important role in control and systems theory. Based on the Jacobi iterative algorithm, the full‐row rank accelerated Jacobi gradient based iterative (RRAJGI) algorithm and the full‐column rank accelerated Jacobi gradient based iterative (CRAJGI) algorithm are proposed. By using the Frobenius norm of matrix and the trace function of matrix, the convergence of the algorithms are proved. The results show that the new algorithms are convergent for arbitrary initial matrices under the convergence number satisfies appropriate conditions. Numerical examples show that RRAJGI algorithm and CRAJGI algorithm have the advantages of faster convergence speed and higher convergence accuracy than other existing algorithms. Finally, an application example for robust and minimum norm observer design of linear systems is given.","PeriodicalId":501055,"journal":{"name":"Optimal Control Applications and Methods","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article consider a class of generalized coupled Sylvester‐transpose matrix equations which play an important role in control and systems theory. Based on the Jacobi iterative algorithm, the full‐row rank accelerated Jacobi gradient based iterative (RRAJGI) algorithm and the full‐column rank accelerated Jacobi gradient based iterative (CRAJGI) algorithm are proposed. By using the Frobenius norm of matrix and the trace function of matrix, the convergence of the algorithms are proved. The results show that the new algorithms are convergent for arbitrary initial matrices under the convergence number satisfies appropriate conditions. Numerical examples show that RRAJGI algorithm and CRAJGI algorithm have the advantages of faster convergence speed and higher convergence accuracy than other existing algorithms. Finally, an application example for robust and minimum norm observer design of linear systems is given.
广义耦合西尔维斯特-跨距矩阵方程的迭代算法及其在线性系统鲁棒和最小规范观测器设计中的应用
本文研究了一类在控制和系统理论中发挥重要作用的广义耦合 Sylvester 传递矩阵方程。在雅可比迭代算法的基础上,提出了基于雅可比梯度的全行秩加速迭代算法(RRAJGI)和基于雅可比梯度的全列秩加速迭代算法(CRAJGI)。利用矩阵的 Frobenius 准则和矩阵的迹函数证明了算法的收敛性。结果表明,在收敛数满足适当条件的情况下,新算法对任意初始矩阵都是收敛的。数值实例表明,与其他现有算法相比,RRAJGI 算法和 CRAJGI 算法具有收敛速度快、收敛精度高等优点。最后,给出了线性系统鲁棒和最小规范观测器设计的应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信