{"title":"A Comprehensive Review of Bias in Deep Learning Models: Methods, Impacts, and Future Directions","authors":"Milind Shah, Nitesh Sureja","doi":"10.1007/s11831-024-10134-2","DOIUrl":null,"url":null,"abstract":"<div><p>This comprehensive review and analysis delve into the intricate facets of bias within the realm of deep learning. As artificial intelligence and machine learning technologies become increasingly integrated into our lives, understanding and mitigating bias in these systems is of paramount importance. This paper scrutinizes the multifaceted nature of bias, encompassing data bias, algorithmic bias, and societal bias, and explores the interconnectedness among these dimensions. Through an exploration of existing literature and recent advancements in the field, this paper offers a critical assessment of various bias mitigation techniques. It examines the challenges faced in addressing bias and emphasizes the need for an intersectional and inclusive approach to effectively rectify disparities. Furthermore, this review underscores the importance of ethical considerations in the development and deployment of deep learning models. It highlights the necessity of diverse representation in data, fairness-aware algorithms, and interpretability as key elements in creating bias-free AI systems. By synthesizing existing research and providing a holistic overview of bias in deep learning, this paper aims to contribute to the ongoing discourse on mitigating bias and fostering equity in artificial intelligence systems. The insights presented herein can serve as a foundation for future research and as a guide for practitioners, policymakers, and stakeholders to navigate the complex landscape of bias in deep learning.</p></div>","PeriodicalId":55473,"journal":{"name":"Archives of Computational Methods in Engineering","volume":"32 1","pages":"255 - 267"},"PeriodicalIF":9.7000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Computational Methods in Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11831-024-10134-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This comprehensive review and analysis delve into the intricate facets of bias within the realm of deep learning. As artificial intelligence and machine learning technologies become increasingly integrated into our lives, understanding and mitigating bias in these systems is of paramount importance. This paper scrutinizes the multifaceted nature of bias, encompassing data bias, algorithmic bias, and societal bias, and explores the interconnectedness among these dimensions. Through an exploration of existing literature and recent advancements in the field, this paper offers a critical assessment of various bias mitigation techniques. It examines the challenges faced in addressing bias and emphasizes the need for an intersectional and inclusive approach to effectively rectify disparities. Furthermore, this review underscores the importance of ethical considerations in the development and deployment of deep learning models. It highlights the necessity of diverse representation in data, fairness-aware algorithms, and interpretability as key elements in creating bias-free AI systems. By synthesizing existing research and providing a holistic overview of bias in deep learning, this paper aims to contribute to the ongoing discourse on mitigating bias and fostering equity in artificial intelligence systems. The insights presented herein can serve as a foundation for future research and as a guide for practitioners, policymakers, and stakeholders to navigate the complex landscape of bias in deep learning.
期刊介绍:
Archives of Computational Methods in Engineering
Aim and Scope:
Archives of Computational Methods in Engineering serves as an active forum for disseminating research and advanced practices in computational engineering, particularly focusing on mechanics and related fields. The journal emphasizes extended state-of-the-art reviews in selected areas, a unique feature of its publication.
Review Format:
Reviews published in the journal offer:
A survey of current literature
Critical exposition of topics in their full complexity
By organizing the information in this manner, readers can quickly grasp the focus, coverage, and unique features of the Archives of Computational Methods in Engineering.