{"title":"Recycling Process for Net-Zero CO2 Emissions in Steel Production","authors":"Ryota Higashi, Daisuke Maruoka, Yuji Iwami, Taichi Murakami","doi":"10.2355/isijinternational.isijint-2024-073","DOIUrl":null,"url":null,"abstract":"</p><p>The iron and steelmaking industry must focus on neutralizing CO<sub>2</sub> emissions. One solution involves using hydrogen as a reducing agent for iron ore. However, carbon is an essential element as primary steel is produced by refining molten carbon-saturated iron (hot metal). Ironmaking processes applying CO<sub>2</sub> capture and utilization have been suggested; however, they are limited to the reduction process. To satisfy the demand for primary steel production with net-zero CO<sub>2</sub> emissions, a new carbon recycling ironmaking process capable of producing hot metal must be considered. This study proposes a carbon recycling ironmaking process using deposited carbon-iron ore composite (CRIP-D). In the CRIP-D process, hot metal is produced by using the solid carbon recovered by reforming exhaust gas as reducing and carburizing agents. Moreover, using the recovered solid carbon, iron oxides are reduced more rapidly, and reduced iron is melted at a lower temperature than that using fossil fuel-derived carbon. This means carbon-neutral steel can be produced more efficiently than conventional ironmaking processes. Using proven technologies, following hot metal production, primary steel can be produced while minimizing the burden on the steel mills for converting equipment. Thus, true carbon-neutral primary steel is feasible using the proposed CRIP-D process.</p>\n<p></p>","PeriodicalId":14619,"journal":{"name":"Isij International","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Isij International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2355/isijinternational.isijint-2024-073","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The iron and steelmaking industry must focus on neutralizing CO2 emissions. One solution involves using hydrogen as a reducing agent for iron ore. However, carbon is an essential element as primary steel is produced by refining molten carbon-saturated iron (hot metal). Ironmaking processes applying CO2 capture and utilization have been suggested; however, they are limited to the reduction process. To satisfy the demand for primary steel production with net-zero CO2 emissions, a new carbon recycling ironmaking process capable of producing hot metal must be considered. This study proposes a carbon recycling ironmaking process using deposited carbon-iron ore composite (CRIP-D). In the CRIP-D process, hot metal is produced by using the solid carbon recovered by reforming exhaust gas as reducing and carburizing agents. Moreover, using the recovered solid carbon, iron oxides are reduced more rapidly, and reduced iron is melted at a lower temperature than that using fossil fuel-derived carbon. This means carbon-neutral steel can be produced more efficiently than conventional ironmaking processes. Using proven technologies, following hot metal production, primary steel can be produced while minimizing the burden on the steel mills for converting equipment. Thus, true carbon-neutral primary steel is feasible using the proposed CRIP-D process.
期刊介绍:
The journal provides an international medium for the publication of fundamental and technological aspects of the properties, structure, characterization and modeling, processing, fabrication, and environmental issues of iron and steel, along with related engineering materials.