Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy

John D. Lewis, Atiyeh A. Miran, Michelle Stoopler, Helen M. Branson, Ashley Danguecan, Krishna Raghu, Linh G. Ly, Mehmet N. Cizmeci, Brian T. Kalish
{"title":"Automated Neuroprognostication via Machine Learning in Neonates with Hypoxic-Ischemic Encephalopathy","authors":"John D. Lewis, Atiyeh A. Miran, Michelle Stoopler, Helen M. Branson, Ashley Danguecan, Krishna Raghu, Linh G. Ly, Mehmet N. Cizmeci, Brian T. Kalish","doi":"10.1101/2024.05.07.24306996","DOIUrl":null,"url":null,"abstract":"<strong>Objectives</strong> Neonatal hypoxic-ischemic encephalopathy is a serious neurologic condition associated with death or neurodevelopmental impairments. Magnetic resonance imaging (MRI) is routinely used for neuroprognostication, but there is substantial subjectivity and uncertainty about neurodevelopmental outcome prediction. We sought to develop an objective and automated approach for the analysis of newborn brain MRI to improve the accuracy of prognostication.","PeriodicalId":501549,"journal":{"name":"medRxiv - Pediatrics","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Pediatrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.05.07.24306996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives Neonatal hypoxic-ischemic encephalopathy is a serious neurologic condition associated with death or neurodevelopmental impairments. Magnetic resonance imaging (MRI) is routinely used for neuroprognostication, but there is substantial subjectivity and uncertainty about neurodevelopmental outcome prediction. We sought to develop an objective and automated approach for the analysis of newborn brain MRI to improve the accuracy of prognostication.
通过机器学习对缺氧缺血性脑病新生儿进行自动神经诊断
目的 新生儿缺氧缺血性脑病是一种严重的神经系统疾病,可导致死亡或神经发育障碍。磁共振成像(MRI)是神经诊断的常规方法,但在神经发育结果预测方面存在很大的主观性和不确定性。我们试图开发一种客观、自动化的新生儿脑部磁共振成像分析方法,以提高预后预测的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信