Yang Wang, Ping Liu, Yangwen Zhu, Guanli Xu, Zijing Cui, Ruotong Du
{"title":"Effect of Janus nanoparticles on foam snap off in porous media","authors":"Yang Wang, Ping Liu, Yangwen Zhu, Guanli Xu, Zijing Cui, Ruotong Du","doi":"10.1515/tsd-2023-2573","DOIUrl":null,"url":null,"abstract":"Nanoparticles can be adsorbed at the gas-liquid interface to improve the stability of foam. However, homogeneous nanoparticles exhibit low surface activity, and their migration to the gas-liquid interface requires significant energy input. This leads to harsh foaming conditions and severely limits the application of homogeneous nanoparticles in foam stability. A microfluidic visualisation model for the study of Janus nanoparticle complex systems was used to investigate the formation behaviour of trapped bubbles in a single connected pore-throat model. The foam generated in the pore showed reduced quantities, sizes, improved quality, and enhanced stability compared to both surfactant systems and hydrophilic nanoparticle complex systems.","PeriodicalId":22258,"journal":{"name":"Tenside Surfactants Detergents","volume":"272 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tenside Surfactants Detergents","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/tsd-2023-2573","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoparticles can be adsorbed at the gas-liquid interface to improve the stability of foam. However, homogeneous nanoparticles exhibit low surface activity, and their migration to the gas-liquid interface requires significant energy input. This leads to harsh foaming conditions and severely limits the application of homogeneous nanoparticles in foam stability. A microfluidic visualisation model for the study of Janus nanoparticle complex systems was used to investigate the formation behaviour of trapped bubbles in a single connected pore-throat model. The foam generated in the pore showed reduced quantities, sizes, improved quality, and enhanced stability compared to both surfactant systems and hydrophilic nanoparticle complex systems.
期刊介绍:
Tenside Surfactants Detergents offers the most recent results of research and development in all fields of surfactant chemistry, such as: synthesis, analysis, physicochemical properties, new types of surfactants, progress in production processes, application-related problems and environmental behavior. Since 1964 Tenside Surfactants Detergents offers strictly peer-reviewed, high-quality articles by renowned specialists around the world.