Experiments and numerical modelling of secondary flows of blood and shear-thinning blood analogue fluids in rotating domains

IF 2.3 3区 工程技术 Q2 MECHANICS
Nathaniel S. Kelly, Harinderjit S. Gill, Andrew N. Cookson, Katharine H. Fraser
{"title":"Experiments and numerical modelling of secondary flows of blood and shear-thinning blood analogue fluids in rotating domains","authors":"Nathaniel S. Kelly,&nbsp;Harinderjit S. Gill,&nbsp;Andrew N. Cookson,&nbsp;Katharine H. Fraser","doi":"10.1007/s00397-024-01447-x","DOIUrl":null,"url":null,"abstract":"<div><p>The transition from concentric primary flow to non-tangential secondary flow of blood was investigated using experimental steady shear rheometry and numerical modelling. The aims were to: assess the difference in secondary flow in a Newtonian versus shear-thinning blood analogue; and measure the secondary flow in the blood. Both experiments and numerical modelling showed that the transition from primary to secondary flow was the same in a Newtonian fluid and a shear-thinning blood analogue. Experiments showed whole blood transitioned to secondary flow at lower modified Reynolds numbers than the Newtonian fluid; and transition was haematocrit dependent with higher RBC concentrations transitioning at lower modified Reynolds numbers. These results indicate that modelling blood as a purely shear-thinning fluid does not predict the correct secondary flow fields in whole blood; non-Newtonian effects beyond shear-thinning behaviour are influential, and incorporating effects such as multiphase contributions and viscoelasticity, yield stress and thixotropy is necessary.</p></div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00397-024-01447-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-024-01447-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

The transition from concentric primary flow to non-tangential secondary flow of blood was investigated using experimental steady shear rheometry and numerical modelling. The aims were to: assess the difference in secondary flow in a Newtonian versus shear-thinning blood analogue; and measure the secondary flow in the blood. Both experiments and numerical modelling showed that the transition from primary to secondary flow was the same in a Newtonian fluid and a shear-thinning blood analogue. Experiments showed whole blood transitioned to secondary flow at lower modified Reynolds numbers than the Newtonian fluid; and transition was haematocrit dependent with higher RBC concentrations transitioning at lower modified Reynolds numbers. These results indicate that modelling blood as a purely shear-thinning fluid does not predict the correct secondary flow fields in whole blood; non-Newtonian effects beyond shear-thinning behaviour are influential, and incorporating effects such as multiphase contributions and viscoelasticity, yield stress and thixotropy is necessary.

Abstract Image

旋转域中血液和剪切稀化血液模拟流体二次流动的实验和数值建模
利用实验稳定剪切流变仪和数值模型研究了血液从同心一次流向非切线二次流的转变。研究的目的是:评估牛顿血液与剪切稀化血液模拟中二次流的差异;测量血液中的二次流。实验和数值建模都表明,在牛顿流体和剪切稀化血液类似物中,从一次流到二次流的过渡是相同的。实验表明,与牛顿流体相比,全血在修正雷诺数较低时过渡到二次流;过渡与血细胞比容有关,红细胞浓度越高,修正雷诺数越低。这些结果表明,将血液模拟为纯粹的剪切稀化流体并不能预测全血中正确的二次流场;剪切稀化行为之外的非牛顿效应也有影响,因此有必要纳入多相贡献和粘弹性、屈服应力和触变性等效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信