Approximation and decomposition of attractors of a Hopfield neural network system

Marius-F. Danca, Guanrong Chen
{"title":"Approximation and decomposition of attractors of a Hopfield neural network system","authors":"Marius-F. Danca, Guanrong Chen","doi":"arxiv-2405.07567","DOIUrl":null,"url":null,"abstract":"In this paper, the Parameter Switching (PS) algorithm is used to approximate\nnumerically attractors of a Hopfield Neural Network (HNN) system. The PS\nalgorithm is a convergent scheme designed for approximating attractors of an\nautonomous nonlinear system, depending linearly on a real parameter. Aided by\nthe PS algorithm, it is shown that every attractor of the HNN system can be\nexpressed as a convex combination of other attractors. The HNN system can\neasily be written in the form of a linear parameter dependence system, to which\nthe PS algorithm can be applied. This work suggests the possibility to use the\nPS algorithm as a control-like or anticontrol-like method for chaos.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.07567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the Parameter Switching (PS) algorithm is used to approximate numerically attractors of a Hopfield Neural Network (HNN) system. The PS algorithm is a convergent scheme designed for approximating attractors of an autonomous nonlinear system, depending linearly on a real parameter. Aided by the PS algorithm, it is shown that every attractor of the HNN system can be expressed as a convex combination of other attractors. The HNN system can easily be written in the form of a linear parameter dependence system, to which the PS algorithm can be applied. This work suggests the possibility to use the PS algorithm as a control-like or anticontrol-like method for chaos.
Hopfield 神经网络系统吸引子的逼近与分解
本文采用参数切换(PS)算法来逼近 Hopfield 神经网络(HNN)系统的数字吸引子。PS 算法是一种收敛方案,设计用于近似自主非线性系统的吸引子,该吸引子与一个实数参数线性相关。在 PS 算法的帮助下,HNN 系统的每个吸引子都可以表达为其他吸引子的凸组合。HNN 系统可以很容易地写成线性参数依赖系统的形式,PS 算法可以应用于该系统。这项工作提出了将 PS 算法用作类似控制或类似反控制的混沌方法的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信