Natalia Pazin Almeida, Cláudio Roberto Duarte, Mikel Tellabide, Idoia Estiati, Martin Olazar, Marcos Antonio de Souza Barrozo
{"title":"Sustainable dye extraction: Annatto powder production in a fountain confined spouted bed","authors":"Natalia Pazin Almeida, Cláudio Roberto Duarte, Mikel Tellabide, Idoia Estiati, Martin Olazar, Marcos Antonio de Souza Barrozo","doi":"10.1002/cjce.25292","DOIUrl":null,"url":null,"abstract":"This study proposes an efficient and sustainable process for annatto powder production using a fountain confined spouted bed. With widespread applications in industries such as food, pharmaceuticals, and cosmetics, conventional extraction methods face environmental and economic challenges. Our study explores a solvent‐free and eco‐friendly approach using mechanical attrition within a fountain confined spouted bed, offering a cost‐effective solution for annatto cultivation. We systematically investigated the impact of four parameters—fountain confiner position and length, draft tube diameter, and airflow velocity—employing experimental design, multiple regression analysis, particle swarm optimization, and computational fluid dynamics–discrete element method (CFD‐DEM) simulations. The proposed optimization condition shows significantly higher collision intensity, improving annatto powder production compared to other central composite design tests. This study contributes to developing of a sustainable and economically viable method for dye production, with potential implications for annatto‐producing regions globally.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes an efficient and sustainable process for annatto powder production using a fountain confined spouted bed. With widespread applications in industries such as food, pharmaceuticals, and cosmetics, conventional extraction methods face environmental and economic challenges. Our study explores a solvent‐free and eco‐friendly approach using mechanical attrition within a fountain confined spouted bed, offering a cost‐effective solution for annatto cultivation. We systematically investigated the impact of four parameters—fountain confiner position and length, draft tube diameter, and airflow velocity—employing experimental design, multiple regression analysis, particle swarm optimization, and computational fluid dynamics–discrete element method (CFD‐DEM) simulations. The proposed optimization condition shows significantly higher collision intensity, improving annatto powder production compared to other central composite design tests. This study contributes to developing of a sustainable and economically viable method for dye production, with potential implications for annatto‐producing regions globally.