On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings

Anjana S. Nair, Indranil Ghosh, Hammed O. Fatoyinbo, Sishu S. Muni
{"title":"On the higher-order smallest ring star network of Chialvo neurons under diffusive couplings","authors":"Anjana S. Nair, Indranil Ghosh, Hammed O. Fatoyinbo, Sishu S. Muni","doi":"arxiv-2405.06000","DOIUrl":null,"url":null,"abstract":"We put forward the dynamical study of a novel higher-order small network of\nChialvo neurons arranged in a ring-star topology, with the neurons interacting\nvia linear diffusive couplings. This model is perceived to imitate the\nnonlinear dynamical properties exhibited by a realistic nervous system where\nthe neurons transfer information through higher-order multi-body interactions.\nWe first analyze our model using the tools from nonlinear dynamics literature:\nfixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the\ncoexistence of chaotic attractors, and also an intriguing route to chaos\nstarting from a fixed point, to period-doubling, to cyclic quasiperiodic closed\ninvariant curves, to ultimately chaos. We numerically observe the existence of\ncodimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark\nSacker. We also qualitatively study the typical phase portraits of the system\nand numerically quantify chaos and complexity using the 0-1 test and sample\nentropy measure respectively. Finally, we study the collective behavior of the\nneurons in terms of two synchronization measures: the cross-correlation\ncoefficient, and the Kuramoto order parameter.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06000","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We put forward the dynamical study of a novel higher-order small network of Chialvo neurons arranged in a ring-star topology, with the neurons interacting via linear diffusive couplings. This model is perceived to imitate the nonlinear dynamical properties exhibited by a realistic nervous system where the neurons transfer information through higher-order multi-body interactions. We first analyze our model using the tools from nonlinear dynamics literature: fixed point analysis, Jacobian matrix, and bifurcation patterns. We observe the coexistence of chaotic attractors, and also an intriguing route to chaos starting from a fixed point, to period-doubling, to cyclic quasiperiodic closed invariant curves, to ultimately chaos. We numerically observe the existence of codimension-1 bifurcation patterns: saddle-node, period-doubling, and Neimark Sacker. We also qualitatively study the typical phase portraits of the system and numerically quantify chaos and complexity using the 0-1 test and sample entropy measure respectively. Finally, we study the collective behavior of the neurons in terms of two synchronization measures: the cross-correlation coefficient, and the Kuramoto order parameter.
论扩散耦合下的奇亚尔沃神经元高阶最小环星网络
我们提出了一个新颖的高阶小型基亚尔沃神经元网络的动力学研究,该网络以环状星形拓扑结构排列,神经元之间通过线性扩散耦合相互作用。我们首先利用非线性动力学文献中的工具:定点分析、雅各布矩阵和分岔模式分析了我们的模型。我们观察到混沌吸引子的共存,以及从定点到周期加倍、到循环准周期封闭不变曲线、到最终混沌的奇妙路径。我们从数值上观察到了二维-1 分岔模式的存在:鞍节点、周期加倍和 NeimarkSacker。我们还定性地研究了系统的典型相位图,并分别使用 0-1 检验和样本熵度量对混沌和复杂性进行了数值量化。最后,我们用两个同步度量:交叉相关系数和仓本阶参数来研究神经元的集体行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信