226 nm far‐ultraviolet‐C light emitting diodes with an emission power over 2 mW

IF 2.5 4区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Tim Kolbe, Hyun Kyong Cho, Sylvia Hagedorn, Jens Rass, Jan Ruschel, Sven Einfeldt, Markus Weyers
{"title":"226 nm far‐ultraviolet‐C light emitting diodes with an emission power over 2 mW","authors":"Tim Kolbe, Hyun Kyong Cho, Sylvia Hagedorn, Jens Rass, Jan Ruschel, Sven Einfeldt, Markus Weyers","doi":"10.1002/pssr.202400092","DOIUrl":null,"url":null,"abstract":"Far‐ultraviolet‐C (far‐UVC) light emitting diodes (LED) emitting at an emission wavelength of 226 nm with different n‐AlGaN contact layers, quantum well barriers, and quantum well numbers are compared regarding their emission power, operation voltage, and lifetime. Electroluminescence measurements show higher emission power but also an increased operation voltage with increasing Al mole fraction in the n‐AlGaN contact layer. Furthermore, it was found that both the mean emission power and the device lifetime decrease with increasing Al mole fraction (82 % to 89 %) of the quantum well barriers and therefore with increasing barrier height. Finally, 226 nm LEDs with 6 and 9 quantum wells were compared. It was observed that the sample with 9 quantum wells shows an around 30 % lower mean emission power but on the other hand the L70 lifetime of these LEDs is higher by a factor of around five. Based on these optimizations, 226 nm LEDs with a maximum external quantum efficiency of 0.28 % (wall plug efficiency of 0.18 %) as well as an emission power of 2.1 mW and an operation voltage of 9.6 V at 200 mA were realized.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"116 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Status Solidi-Rapid Research Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/pssr.202400092","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Far‐ultraviolet‐C (far‐UVC) light emitting diodes (LED) emitting at an emission wavelength of 226 nm with different n‐AlGaN contact layers, quantum well barriers, and quantum well numbers are compared regarding their emission power, operation voltage, and lifetime. Electroluminescence measurements show higher emission power but also an increased operation voltage with increasing Al mole fraction in the n‐AlGaN contact layer. Furthermore, it was found that both the mean emission power and the device lifetime decrease with increasing Al mole fraction (82 % to 89 %) of the quantum well barriers and therefore with increasing barrier height. Finally, 226 nm LEDs with 6 and 9 quantum wells were compared. It was observed that the sample with 9 quantum wells shows an around 30 % lower mean emission power but on the other hand the L70 lifetime of these LEDs is higher by a factor of around five. Based on these optimizations, 226 nm LEDs with a maximum external quantum efficiency of 0.28 % (wall plug efficiency of 0.18 %) as well as an emission power of 2.1 mW and an operation voltage of 9.6 V at 200 mA were realized.This article is protected by copyright. All rights reserved.
发射功率超过 2 mW 的 226 nm 远紫外-C 发光二极管
本研究比较了采用不同 nAlGaN 接触层、量子阱势垒和量子阱数量、发射波长为 226 纳米的远紫外-C (far-UVC) 发光二极管(LED)的发射功率、工作电压和寿命。电致发光测量结果表明,随着 n-AlGaN 接触层中铝摩尔分数的增加,发射功率也会增加,同时工作电压也会升高。此外,研究还发现,随着量子阱势垒中铝的摩尔分数(82% 至 89%)的增加,势垒高度也随之增加,平均发射功率和器件寿命也随之降低。最后,对具有 6 个和 9 个量子阱的 226 纳米 LED 进行了比较。据观察,具有 9 个量子阱的样品平均发射功率降低了约 30%,但另一方面,这些 LED 的 L70 寿命却提高了约 5 倍。基于这些优化,实现了最大外部量子效率为 0.28 %(壁塞效率为 0.18 %)、发射功率为 2.1 mW、200 mA 时工作电压为 9.6 V 的 226 nm LED。本文受版权保护。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physica Status Solidi-Rapid Research Letters
Physica Status Solidi-Rapid Research Letters 物理-材料科学:综合
CiteScore
5.20
自引率
3.60%
发文量
208
审稿时长
1.4 months
期刊介绍: Physica status solidi (RRL) - Rapid Research Letters was designed to offer extremely fast publication times and is currently one of the fastest double peer-reviewed publication media in solid state and materials physics. Average times are 11 days from submission to first editorial decision, and 12 days from acceptance to online publication. It communicates important findings with a high degree of novelty and need for express publication, as well as other results of immediate interest to the solid-state physics and materials science community. Published Letters require approval by at least two independent reviewers. The journal covers topics such as preparation, structure and simulation of advanced materials, theoretical and experimental investigations of the atomistic and electronic structure, optical, magnetic, superconducting, ferroelectric and other properties of solids, nanostructures and low-dimensional systems as well as device applications. Rapid Research Letters particularly invites papers from interdisciplinary and emerging new areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信