Triangulated categories of framed bispectra and framed motives

IF 0.7 4区 数学 Q2 MATHEMATICS
G. Garkusha, I. Panin
{"title":"Triangulated categories of framed bispectra and framed motives","authors":"G. Garkusha, I. Panin","doi":"10.1090/spmj/1786","DOIUrl":null,"url":null,"abstract":"<p>An alternative approach to the classical Morel–Voevodsky stable motivic homotopy theory <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is suggested. The triangulated category of framed bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{\\operatorname {nis}}^{\\operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and effective framed bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r comma e f f Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> <mml:mo>,</mml:mo> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{\\operatorname {nis}}^{\\operatorname {fr},\\operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{\\operatorname {nis}}^{\\operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript n i s Superscript f r comma e f f Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>nis</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> <mml:mo>,</mml:mo> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{\\operatorname {nis}}^{\\operatorname {fr},\\operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> recover classical Morel–Voevodsky triangulated categories of bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and effective bispectra <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Superscript e f f Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH^{\\operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> respectively.</p> <p>Also, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:mi>H</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Superscript e f f Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msup> <mml:mi>H</mml:mi> <mml:mrow> <mml:mi>eff</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH^{\\operatorname {eff}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are recovered as the triangulated category of framed motivic spectral functors <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper S upper H Subscript upper S Sub Superscript 1 Superscript f r Baseline left-bracket script upper F r 0 left-parenthesis k right-parenthesis right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>S</mml:mi> <mml:msubsup> <mml:mi>H</mml:mi> <mml:mrow> <mml:msup> <mml:mi>S</mml:mi> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mrow> <mml:mi mathvariant=\"script\">F</mml:mi> </mml:mrow> <mml:msub> <mml:mi>r</mml:mi> <mml:mn>0</mml:mn> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">SH_{S^1}^{\\operatorname {fr}}[\\mathcal {F}r_0(k)]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and the triangulated category of framed motives <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper S script upper H Superscript f r Baseline left-parenthesis k right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"script\">S</mml:mi> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>fr</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>k</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {SH}^{\\operatorname {fr}}(k)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> constructed in the paper.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"34 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1786","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

An alternative approach to the classical Morel–Voevodsky stable motivic homotopy theory S H ( k ) SH(k) is suggested. The triangulated category of framed bispectra S H nis fr ( k ) SH_{\operatorname {nis}}^{\operatorname {fr}}(k) and effective framed bispectra S H nis fr , eff ( k ) SH_{\operatorname {nis}}^{\operatorname {fr},\operatorname {eff}}(k) are introduced in the paper. Both triangulated categories only involve Nisnevich local equivalences and have nothing to do with any kind of motivic equivalences. It is shown that S H nis fr ( k ) SH_{\operatorname {nis}}^{\operatorname {fr}}(k) and S H nis fr , eff ( k ) SH_{\operatorname {nis}}^{\operatorname {fr},\operatorname {eff}}(k) recover classical Morel–Voevodsky triangulated categories of bispectra S H ( k ) SH(k) and effective bispectra S H eff ( k ) SH^{\operatorname {eff}}(k) respectively.

Also, S H ( k ) SH(k) and S H eff ( k ) SH^{\operatorname {eff}}(k) are recovered as the triangulated category of framed motivic spectral functors S H S 1 fr [ F r 0 ( k ) ] SH_{S^1}^{\operatorname {fr}}[\mathcal {F}r_0(k)] and the triangulated category of framed motives S H fr ( k ) \mathcal {SH}^{\operatorname {fr}}(k) constructed in the paper.

框架二谱和框架动机的三角范畴
本文提出了经典莫雷尔-伏沃斯基稳定动机同调理论 S H ( k ) SH(k) 的另一种方法。文中介绍了有框双谱 S H nis fr ( k ) SH_{\operatorname {nis}}^{\operatorname {fr}}(k) 和有效有框双谱 S H nis fr , eff ( k ) SH_{\operatorname {nis}}^{\operatorname {fr},\operatorname {eff}}(k) 的三角范畴。这两个三角范畴都只涉及尼斯内维奇局部等价,而与任何一种动机等价无关。研究表明,S H nis fr ( k ) SH_{\operatorname {nis}}^{\operatorname {fr}}(k) 和 S H nis fr , eff ( k ) SH_{\operatorname {nis}}^{\operatorname {fr}、\operatorname {eff}}(k) 分别恢复了经典的莫雷尔-伏伊伏丁斯基三角范畴的双谱 S H ( k ) SH(k) 和有效双谱 S H eff ( k ) SH^{\operatorname {eff}}(k) 。还有 S H ( k ) SH(k) 和 S H eff ( k ) SH^{\operatorname {eff}}(k) 被复原为有框动机谱函子 S H S 1 fr [ F r 0 ( k ) ] SH_{S^1 fr [ F r 0 ( k ) ] 的三角范畴。) ] SH_{S^1}^{\operatorname {fr}}[\mathcal {F}r_0(k)] 和本文构建的有框动机三角范畴 S H fr ( k ) \mathcal {SH}^{\operatorname {fr}}(k).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信