{"title":"Matroid products in tropical geometry","authors":"Nicholas Anderson","doi":"10.1007/s40687-024-00452-z","DOIUrl":null,"url":null,"abstract":"<p>Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00452-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.