Matroid products in tropical geometry

IF 1.2 3区 数学 Q1 MATHEMATICS
Nicholas Anderson
{"title":"Matroid products in tropical geometry","authors":"Nicholas Anderson","doi":"10.1007/s40687-024-00452-z","DOIUrl":null,"url":null,"abstract":"<p>Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"139 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00452-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.

热带几何中的 Matroid 乘积
矩阵的对称幂最早由 Lovasz(《组合调查》,第 6 届英国组合会议论文集,第 45-86 页,1977 年)和 Mason(《代数方法图论》,1:519-561,1981 年)在 20 世纪 70 年代提出:1970 年代,Lovasz(《组合调查》,载于:第六届英国组合会议论文集,第 45-86 页,1977 年)和 Mason(《Algebr Methods Graph Theory 1:519-561,1981 年》)首次提出了矩阵的对称幂。自这些初步发现以来,对 matroid 对称幂的研究在很大程度上仍未得到深入探讨。在本文中,我们建立了具有任意大对称幂的有价 matroids 与作为热带理想的种类出现的热带线性空间之间的等价关系。在建立这一等价关系的过程中,我们还证明了所有热带线性空间都通过标度一相连。这些结果为研究矩阵对称幂提供了额外的几何和代数联系,我们利用这些联系证明了具有第二对称幂的矩阵类是次要封闭的,并且具有无限多的禁止次要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信