{"title":"Matroid products in tropical geometry","authors":"Nicholas Anderson","doi":"10.1007/s40687-024-00452-z","DOIUrl":null,"url":null,"abstract":"<p>Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"139 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00452-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.
期刊介绍:
Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science.
This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.