Matroid products in tropical geometry

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nicholas Anderson
{"title":"Matroid products in tropical geometry","authors":"Nicholas Anderson","doi":"10.1007/s40687-024-00452-z","DOIUrl":null,"url":null,"abstract":"<p>Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00452-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Symmetric powers of matroids were first introduced by Lovasz (Combinatorial surveys, in: Proceedings 6th British combinatorial conference, pp 45-86, 1977) and Mason (Algebr Methods Graph Theory 1:519-561, 1981) in the 1970s, where it was shown that not all matroids admit higher symmetric powers. Since these initial findings, the study of matroid symmetric powers has remained largely unexplored. In this paper, we establish an equivalence between valuated matroids with arbitrarily large symmetric powers and tropical linear spaces that appear as the variety of a tropical ideal. In establishing this equivalence, we additionally show that all tropical linear spaces are connected through codimension one. These results provide additional geometric and algebraic connections to the study of matroid symmetric powers, which we leverage to prove that the class of matroids with second symmetric power is minor-closed and has infinitely many forbidden minors.

热带几何中的 Matroid 乘积
矩阵的对称幂最早由 Lovasz(《组合调查》,第 6 届英国组合会议论文集,第 45-86 页,1977 年)和 Mason(《代数方法图论》,1:519-561,1981 年)在 20 世纪 70 年代提出:1970 年代,Lovasz(《组合调查》,载于:第六届英国组合会议论文集,第 45-86 页,1977 年)和 Mason(《Algebr Methods Graph Theory 1:519-561,1981 年》)首次提出了矩阵的对称幂。自这些初步发现以来,对 matroid 对称幂的研究在很大程度上仍未得到深入探讨。在本文中,我们建立了具有任意大对称幂的有价 matroids 与作为热带理想的种类出现的热带线性空间之间的等价关系。在建立这一等价关系的过程中,我们还证明了所有热带线性空间都通过标度一相连。这些结果为研究矩阵对称幂提供了额外的几何和代数联系,我们利用这些联系证明了具有第二对称幂的矩阵类是次要封闭的,并且具有无限多的禁止次要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信