F. Gesztesy, L. Littlejohn, R. Nichols, M. Piorkowski, J. Stanfill
{"title":"Donoghue 𝑚-functions for Singular Sturm–Liouville operators","authors":"F. Gesztesy, L. Littlejohn, R. Nichols, M. Piorkowski, J. Stanfill","doi":"10.1090/spmj/1795","DOIUrl":null,"url":null,"abstract":"<p>Let <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper A With dot\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dot {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a densely defined, closed, symmetric operator in the complex, separable Hilbert space <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with equal deficiency indices and denote by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper N Subscript i Baseline equals kernel left-parenthesis left-parenthesis ModifyingAbove upper A With dot right-parenthesis Superscript asterisk Baseline minus i upper I Subscript script upper H Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>ker</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mrow> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>∗<!-- ∗ --></mml:mo> </mml:msup> <mml:mo>−<!-- − --></mml:mo> <mml:mi>i</mml:mi> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {N}_i = \\ker ((\\dot {A})^* - i I_{\\mathcal {H}})</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"dimension left-parenthesis script upper N Subscript i Baseline right-parenthesis equals k element-of double-struck upper N union StartSet normal infinity EndSet\"> <mml:semantics> <mml:mrow> <mml:mi>dim</mml:mi> <mml:mo><!-- --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>k</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">N</mml:mi> </mml:mrow> <mml:mo>∪<!-- ∪ --></mml:mo> <mml:mo fence=\"false\" stretchy=\"false\">{</mml:mo> <mml:mi mathvariant=\"normal\">∞<!-- ∞ --></mml:mi> <mml:mo fence=\"false\" stretchy=\"false\">}</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dim (\\mathcal {N}_i)=k\\in \\mathbb {N} \\cup \\{\\infty \\}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the associated deficiency subspace of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper A With dot\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dot {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. If <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A\"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding=\"application/x-tex\">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> denotes a self-adjoint extension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"ModifyingAbove upper A With dot\"> <mml:semantics> <mml:mrow> <mml:mover> <mml:mi>A</mml:mi> <mml:mo>˙<!-- ˙ --></mml:mo> </mml:mover> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\dot {A}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the Donoghue <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-operator <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript upper A comma script upper N Sub Subscript i Subscript Superscript upper D o Baseline left-parenthesis dot right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mi>D</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mo>⋅<!-- ⋅ --></mml:mo> <mml:mspace width=\"thinmathspace\" /> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M_{A,\\mathcal {N}_i}^{Do} (\\,\\cdot \\,)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper N Subscript i\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {N}_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula> associated with the pair <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis upper A comma script upper N Subscript i Baseline right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(A,\\mathcal {N}_i)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is given by <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper M Subscript upper A comma script upper N Sub Subscript i Subscript Superscript upper D o Baseline left-parenthesis z right-parenthesis equals z upper I Subscript script upper N Sub Subscript i Subscript Baseline plus left-parenthesis z squared plus 1 right-parenthesis upper P Subscript script upper N Sub Subscript i Subscript Baseline left-parenthesis upper A minus z upper I Subscript script upper H Baseline right-parenthesis Superscript negative 1 Baseline upper P Subscript script upper N Sub Subscript i Subscript Baseline vertical-bar Subscript script upper N Sub Subscript i Subscript Baseline\"> <mml:semantics> <mml:mrow> <mml:msubsup> <mml:mi>M</mml:mi> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> <mml:mrow> <mml:mi>D</mml:mi> <mml:mi>o</mml:mi> </mml:mrow> </mml:msubsup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>z</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>z</mml:mi> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mo>+</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>z</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo>+</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mo>−<!-- − --></mml:mo> <mml:mi>z</mml:mi> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> </mml:mrow> </mml:msub> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:msub> <mml:mo fence=\"false\" stretchy=\"false\">|</mml:mo> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">M_{A,\\mathcal {N}_i}^{Do}(z)=zI_{\\mathcal {N}_i} + (z^2+1) P_{\\mathcal {N}_i} (A - z I_{\\mathcal {H}})^{-1} P_{\\mathcal {N}_i} \\vert _{\\mathcal {N}_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"z element-of double-struck upper C minus double-struck upper R comma\"> <mml:semantics> <mml:mrow> <mml:mi>z</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">C</mml:mi> </mml:mrow> <mml:mo>∖<!-- ∖ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> <mml:mo>,</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">z\\in \\mathbb {C}\\setminus \\mathbb {R},</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper I Subscript script upper N Sub Subscript i\"> <mml:semantics> <mml:msub> <mml:mi>I</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">I_{\\mathcal {N}_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the identity operator in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper N Subscript i\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {N}_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper P Subscript script upper N Sub Subscript i\"> <mml:semantics> <mml:msub> <mml:mi>P</mml:mi> <mml:mrow> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">P_{\\mathcal {N}_i}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> the orthogonal projection in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper H\"> <mml:semantics> <mml:mrow> <mml:mi mathvariant=\"script\">H</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\mathcal {H}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> onto <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script upper N Subscript i\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"script\">N</mml:mi> </mml:mrow> <mml:mi>i</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathcal {N}_i</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p> <p>Assuming the standard local integrability hypotheses on the coefficients <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p comma q comma r\"> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>,</mml:mo> <mml:mi>q</mml:mi> <mml:mo>,</mml:mo> <mml:mi>r</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">p, q,r</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we study all self-adjoint realizations corresponding to the differential expression <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau equals StartFraction 1 Over r left-parenthesis x right-parenthesis EndFraction left-bracket minus StartFraction d Over d x EndFraction p left-parenthesis x right-parenthesis StartFraction d Over d x EndFraction plus q left-parenthesis x right-parenthesis right-bracket\"> <mml:semantics> <mml:mrow> <mml:mi>τ<!-- τ --></mml:mi> <mml:mo>=</mml:mo> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mrow> <mml:mi>r</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> </mml:mfrac> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−<!-- − --></mml:mo> <mml:mfrac> <mml:mi>d</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:mfrac> <mml:mi>p</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mfrac> <mml:mi>d</mml:mi> <mml:mrow> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> </mml:mrow> </mml:mfrac> <mml:mo>+</mml:mo> <mml:mi>q</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tau =\\frac {1}{r(x)}[-\\frac {d}{dx}p(x)\\frac {d}{dx} + q(x)]</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a.e. <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"x element-of left-parenthesis a comma b right-parenthesis subset-of-or-equal-to double-struck upper R\"> <mml:semantics> <mml:mrow> <mml:mi>x</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>⊆<!-- ⊆ --></mml:mo> <mml:mrow> <mml:mi mathvariant=\"double-struck\">R</mml:mi> </mml:mrow> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">x\\in (a,b) \\subseteq \\mathbb {R}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper L squared left-parenthesis left-parenthesis a comma b right-parenthesis semicolon r d x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>L</mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>a</mml:mi> <mml:mo>,</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>;</mml:mo> <mml:mi>r</mml:mi> <mml:mi>d</mml:mi> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">L^2((a,b); rdx)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and, as our principal aim in this paper, systematically construct the associated Donoghue <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-functions (respectively, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 2 times 2 right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>2</mml:mn> <mml:mo>×<!-- × --></mml:mo> <mml:mn>2</mml:mn> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(2 \\times 2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> matrices) in all cases where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"tau\"> <mml:semantics> <mml:mi>τ<!-- τ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\tau</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is in the limit circle case at least at one interval endpoint <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"a\"> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=\"application/x-tex\">a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> or <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b\"> <mml:semantics> <mml:mi>b</mml:mi> <mml:annotation encoding=\"application/x-tex\">b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1795","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let A˙\dot {A} be a densely defined, closed, symmetric operator in the complex, separable Hilbert space H\mathcal {H} with equal deficiency indices and denote by Ni=ker((A˙)∗−iIH)\mathcal {N}_i = \ker ((\dot {A})^* - i I_{\mathcal {H}}), dim(Ni)=k∈N∪{∞}\dim (\mathcal {N}_i)=k\in \mathbb {N} \cup \{\infty \}, the associated deficiency subspace of A˙\dot {A}. If AA denotes a self-adjoint extension of A˙\dot {A} in H\mathcal {H}, the Donoghue mm-operator MA,NiDo(⋅)M_{A,\mathcal {N}_i}^{Do} (\,\cdot \,) in Ni\mathcal {N}_i associated with the pair (A,Ni)(A,\mathcal {N}_i) is given by MA,NiDo(z)=zINi+(z2+1)PNi(A−zIH)−1PNi|NiM_{A,\mathcal {N}_i}^{Do}(z)=zI_{\mathcal {N}_i} + (z^2+1) P_{\mathcal {N}_i} (A - z I_{\mathcal {H}})^{-1} P_{\mathcal {N}_i} \vert _{\mathcal {N}_i}, z∈C∖R,z\in \mathbb {C}\setminus \mathbb {R}, with INiI_{\mathcal {N}_i} the identity operator in Ni\mathcal {N}_i, and PNiP_{\mathcal {N}_i} the orthogonal projection in H\mathcal {H} onto Ni\mathcal {N}_i.
Assuming the standard local integrability hypotheses on the coefficients p,q,rp, q,r, we study all self-adjoint realizations corresponding to the differential expression τ=1r(x)[−ddxp(x)ddx+q(x)]\tau =\frac {1}{r(x)}[-\frac {d}{dx}p(x)\frac {d}{dx} + q(x)] for a.e. x∈(a,b)⊆Rx\in (a,b) \subseteq \mathbb {R}, in L2((a,b);rdx)L^2((a,b); rdx), and, as our principal aim in this paper, systematically construct the associated Donoghue mm-functions (respectively, (2×2)(2 \times 2) matrices) in all cases where τ\tau is in the limit circle case at least at one interval endpoint aa or bb.
让 A ˙ \dot {A} 是复数可分离希尔伯特空间 H \mathcal {H} 中的一个密定义、闭合、对称算子,其缺陷指数相等,并用 N i = ker ( ( A ˙ ) ∗ - i I H ) 表示。 \mathcal {N}_i = \ker ((\dot {A})^* - i I_{mathcal {H}}) , dim ( N i ) = k ∈ N∪ { ∞ } \dim (\mathcal {N}_i)=k\in \mathbb {N}\cup \{infty \} ,A˙ \dot {A} 的相关缺陷子空间。如果 A A 表示 A ˙ \dot {A} 在 H \mathcal {H} 中的自交扩展,则多诺霍 m m -operator M A , N i D o ( ⋅ ) M_{A,\mathcal {N}_i}^{Do} (\,\cdot \,) 在 N i \mathcal {N}_i 中与一对 ( A . ) 相关联、 N i ) (A,\mathcal {N}_i) 由 M A , N i D o ( z ) = z I N i + ( z 2 + 1 ) P N i ( A - z I H ) - 1 P N i | N i M_{A,\mathcal {N}_i}^{Do}(z)=zI_{\mathcal {N}_i}+ (z^2+1) P_{\mathcal {N}_i} (A - z I_{\mathcal {H}})^{-1} P_{\mathcal {N}_i}\vert _{\mathcal {N}_i} , z ∈ C ∖ R , z\in \mathbb {C}setminus \mathbb {R}, with I N i I_{\mathcal {N}_i} the identity operator in N i \mathcal {N}_i 、和 P N i P_{{mathcal {N}_i} 是 H \mathcal {H} 中到 N i \mathcal {N}_i 的正交投影。假定系数 p , q , r p, q,r 的标准局部可整性假设,我们研究与微分表达式 τ = 1 r ( x ) [ - d d x p ( x ) d d x + q ( x ) ] \tau =\frac {1}{r(x)}[-\frac {d}{dx}p(x)\frac {d}{dx} + q(x)] a.e. 时对应的所有自联合实现。 x ∈ ( a , b ) ⊆ R x\in (a,b) \subseteq \mathbb {R}, in L 2 ( ( a , b ) ; r d x ) L^2((a,b);rdx),并且,作为我们本文的主要目的,在 τ \tau 至少在一个区间端点 a a 或 b b 处处于极限圆情况的所有情况下,系统地构建相关的多诺霍 m m - 函数(分别是 ( 2 × 2 ) (2 times 2) 矩阵)。
期刊介绍:
This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.