Heat Flux Prediction of Radiation Balance Wall by Deep Convolutional Neural Networks

IF 1.1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Gang Dai, Wenwen Zhao, Shaobo Yao, WanShu Li, Weifang Chen
{"title":"Heat Flux Prediction of Radiation Balance Wall by Deep Convolutional Neural Networks","authors":"Gang Dai, Wenwen Zhao, Shaobo Yao, WanShu Li, Weifang Chen","doi":"10.2514/1.t6973","DOIUrl":null,"url":null,"abstract":"<p>Aerodynamic thermal prediction plays a crucial role in the design of a hypersonic vehicle, particularly with regard to the thermal protection system. Traditional methods of aerodynamic thermal prediction encounter several primary challenges, including slow convergence rates, rigorous computational grid requirements, and the need to simplify by assuming isothermal wall conditions. In this research, we propose using the Convolutional Neural Network (CNN) Hybrid Feature (HF) model to facilitate rapid aerothermal predictions for both isothermal wall conditions with varying wall temperatures and radiation balance wall conditions. The CNN HF model is trained separately for isothermal wall conditions under identical inflow conditions as well as for diverse inflow conditions and radiation balance wall temperature scenarios. The model’s predictions are then compared to numerical simulation results. Our findings demonstrate that the CNN HF model efficiently provides rapid aerothermal predictions by leveraging macroscopic converged flowfield data. In the majority of cases, the model achieves a threefold enhancement in computational efficiency while maintaining predictive accuracy within a 5% range when compared to numerical simulation results. The application of the CNN HF approach in aerothermal prediction for different wall temperatures and radiation balance scenarios has significantly reduced the time required to obtain aerodynamic heating results.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6973","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aerodynamic thermal prediction plays a crucial role in the design of a hypersonic vehicle, particularly with regard to the thermal protection system. Traditional methods of aerodynamic thermal prediction encounter several primary challenges, including slow convergence rates, rigorous computational grid requirements, and the need to simplify by assuming isothermal wall conditions. In this research, we propose using the Convolutional Neural Network (CNN) Hybrid Feature (HF) model to facilitate rapid aerothermal predictions for both isothermal wall conditions with varying wall temperatures and radiation balance wall conditions. The CNN HF model is trained separately for isothermal wall conditions under identical inflow conditions as well as for diverse inflow conditions and radiation balance wall temperature scenarios. The model’s predictions are then compared to numerical simulation results. Our findings demonstrate that the CNN HF model efficiently provides rapid aerothermal predictions by leveraging macroscopic converged flowfield data. In the majority of cases, the model achieves a threefold enhancement in computational efficiency while maintaining predictive accuracy within a 5% range when compared to numerical simulation results. The application of the CNN HF approach in aerothermal prediction for different wall temperatures and radiation balance scenarios has significantly reduced the time required to obtain aerodynamic heating results.

利用深度卷积神经网络预测辐射平衡墙的热通量
气动热预测在高超音速飞行器的设计中起着至关重要的作用,特别是在热保护系统方面。传统的气动热预测方法遇到了几个主要挑战,包括收敛速度慢、计算网格要求严格以及需要通过假设等温壁条件进行简化。在这项研究中,我们建议使用卷积神经网络(CNN)混合特征(HF)模型,以促进对具有不同壁面温度的等温壁面条件和辐射平衡壁面条件的快速气动热预测。针对相同流入条件下的等温壁面条件以及不同流入条件和辐射平衡壁面温度情况,分别对 CNN HF 模型进行了训练。然后将模型的预测结果与数值模拟结果进行比较。我们的研究结果表明,CNN 高频模型通过利用宏观收敛流场数据,可有效提供快速的气温预测。在大多数情况下,该模型的计算效率提高了三倍,同时与数值模拟结果相比,预测精度保持在 5%的范围内。将 CNN 高频方法应用于不同壁面温度和辐射平衡方案的气动热预测,大大缩短了获得气动加热结果所需的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Thermophysics and Heat Transfer
Journal of Thermophysics and Heat Transfer 工程技术-工程:机械
CiteScore
3.50
自引率
19.00%
发文量
95
审稿时长
3 months
期刊介绍: This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信