Fabrication of animal shell and sugarcane bagasse particulate hybrid reinforced epoxy composites for structural applications

Isiaka O Oladele, Annuoluwapo S Taiwo, Lateef J Bello, Samuel O Balogun, Lephuthing Senzeni Sipho, Samson O Adelani
{"title":"Fabrication of animal shell and sugarcane bagasse particulate hybrid reinforced epoxy composites for structural applications","authors":"Isiaka O Oladele, Annuoluwapo S Taiwo, Lateef J Bello, Samuel O Balogun, Lephuthing Senzeni Sipho, Samson O Adelani","doi":"10.1177/09673911231202183","DOIUrl":null,"url":null,"abstract":"This study investigated the effects of using egg and snail shells, along with sugarcane bagasse, on various properties of hybrid reinforced epoxy composites for structural applications. The particulate shells and sugarcane bagasse serve as reinforcements while the matrix consists of epoxy resin and hardener. The composites were produced using the hand lay-up technique, and the mechanical, wear and physical properties of the prepared samples were evaluated. The fractured surfaces of the samples were examined using a scanning electron microscope. The results revealed that the source of the shell had an impact on the properties of the composites as eggshell-sugarcane bagasse particulate reinforced epoxy composites exhibited improved strengths, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed improved moduli. Optimal values were obtained for flexural and tensile strengths at 15 and 18 wt%, respectively, while flexural and tensile moduli were optimal at 12 and 15 wt%, respectively. Eggshell-sugarcane bagasse particulate reinforced epoxy composites demonstrated an optimal impact strength value of 21.81 J/m<jats:sup>2</jats:sup>, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed optimal results in all other properties mostly at 20 wt%. Conclusively, the use of snail shell-sugarcane bagasse particles was found to be more effective than eggshell-sugarcane bagasse particles for enhancing the properties of epoxy-based composites for structural applications while particulate reinforcement content within the range of 12–20 wt% are responsible for optimum performances.","PeriodicalId":20417,"journal":{"name":"Polymers and Polymer Composites","volume":"2015 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers and Polymer Composites","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/09673911231202183","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigated the effects of using egg and snail shells, along with sugarcane bagasse, on various properties of hybrid reinforced epoxy composites for structural applications. The particulate shells and sugarcane bagasse serve as reinforcements while the matrix consists of epoxy resin and hardener. The composites were produced using the hand lay-up technique, and the mechanical, wear and physical properties of the prepared samples were evaluated. The fractured surfaces of the samples were examined using a scanning electron microscope. The results revealed that the source of the shell had an impact on the properties of the composites as eggshell-sugarcane bagasse particulate reinforced epoxy composites exhibited improved strengths, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed improved moduli. Optimal values were obtained for flexural and tensile strengths at 15 and 18 wt%, respectively, while flexural and tensile moduli were optimal at 12 and 15 wt%, respectively. Eggshell-sugarcane bagasse particulate reinforced epoxy composites demonstrated an optimal impact strength value of 21.81 J/m2, while snail shell-sugarcane bagasse particulate reinforced epoxy composites showed optimal results in all other properties mostly at 20 wt%. Conclusively, the use of snail shell-sugarcane bagasse particles was found to be more effective than eggshell-sugarcane bagasse particles for enhancing the properties of epoxy-based composites for structural applications while particulate reinforcement content within the range of 12–20 wt% are responsible for optimum performances.
制作用于结构应用的动物贝壳和甘蔗渣颗粒混合增强环氧树脂复合材料
本研究调查了使用鸡蛋壳、蜗牛壳和甘蔗渣对结构用混合增强环氧复合材料各种性能的影响。微粒贝壳和甘蔗渣用作增强材料,基体则由环氧树脂和固化剂组成。复合材料采用手糊技术制成,并对制备样品的机械、磨损和物理性能进行了评估。使用扫描电子显微镜检查了样品的断裂表面。结果表明,贝壳的来源对复合材料的性能有影响,蛋壳-甘蔗渣颗粒增强环氧树脂复合材料的强度有所提高,而蜗牛壳-甘蔗渣颗粒增强环氧树脂复合材料的模量有所提高。挠曲强度和拉伸强度的最佳值分别为 15 和 18 wt%,而挠曲模量和拉伸模量的最佳值分别为 12 和 15 wt%。蛋壳-甘蔗渣微粒增强环氧树脂复合材料的最佳冲击强度值为 21.81 J/m2,而螺壳-甘蔗渣微粒增强环氧树脂复合材料在所有其他性能方面的最佳结果大多出现在 20 wt%时。综上所述,在提高环氧基复合材料的结构应用性能方面,使用蜗牛壳-甘蔗渣颗粒比使用蛋壳-甘蔗渣颗粒更有效,而颗粒增强含量在 12-20 wt% 的范围内可获得最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信