{"title":"Explicit constants in the nonuniform local limit theorem for Poisson binomial random variables","authors":"Graeme Auld, Kritsana Neammanee","doi":"10.1186/s13660-024-03143-z","DOIUrl":null,"url":null,"abstract":"In a recent paper the authors proved a nonuniform local limit theorem concerning normal approximation of the point probabilities $P(S=k)$ when $S=\\sum_{i=1}^{n}X_{i}$ and $X_{1},X_{2},\\ldots ,X_{n}$ are independent Bernoulli random variables that may have different success probabilities. However, their main result contained an undetermined constant, somewhat limiting its applicability. In this paper we give a nonuniform bound in the same setting but with explicit constants. Our proof uses Stein’s method and, in particular, the K-function and concentration inequality approaches. We also prove a new uniform local limit theorem for Poisson binomial random variables that is used to help simplify the proof in the nonuniform case.","PeriodicalId":16088,"journal":{"name":"Journal of Inequalities and Applications","volume":"190 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inequalities and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13660-024-03143-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In a recent paper the authors proved a nonuniform local limit theorem concerning normal approximation of the point probabilities $P(S=k)$ when $S=\sum_{i=1}^{n}X_{i}$ and $X_{1},X_{2},\ldots ,X_{n}$ are independent Bernoulli random variables that may have different success probabilities. However, their main result contained an undetermined constant, somewhat limiting its applicability. In this paper we give a nonuniform bound in the same setting but with explicit constants. Our proof uses Stein’s method and, in particular, the K-function and concentration inequality approaches. We also prove a new uniform local limit theorem for Poisson binomial random variables that is used to help simplify the proof in the nonuniform case.
期刊介绍:
The aim of this journal is to provide a multi-disciplinary forum of discussion in mathematics and its applications in which the essentiality of inequalities is highlighted. This Journal accepts high quality articles containing original research results and survey articles of exceptional merit. Subject matters should be strongly related to inequalities, such as, but not restricted to, the following: inequalities in analysis, inequalities in approximation theory, inequalities in combinatorics, inequalities in economics, inequalities in geometry, inequalities in mechanics, inequalities in optimization, inequalities in stochastic analysis and applications.