{"title":"Rarefied Flow Simulations of Heat Transfer Across Evacuated Cryogenic Tank Insulation Structures","authors":"Martin Konopka, Eric Winkert, Christian Wendt","doi":"10.2514/1.t6914","DOIUrl":null,"url":null,"abstract":"<p>The Direct Simulation Monte Carlo Method computations are performed to investigate the heat transfer across highly evacuated cryogenic tank insulation structures. These structures usually consist of one cold and one hot wall with a temperature difference up to 260 K surrounding a rarefied gas which originates from permeating or leaking propellant. To validate the flow solver PICLas for this application, heat transfer results across parallel flat plates with nonflowing gaseous hydrogen and methane are compared to empirical relations of rarefied gas heat transfer and reference computations, showing good agreement with a deviation of less than 11%. Because gas flow usually occurs during and after evacuation, the heat transfer and skin friction coefficient in a symmetrical hydrogen channel flow with a wall distance of 30 mm is compared with literature data, showing a good match with a Nusselt number deviation of less than 20%. Furthermore, honeycomb tank insulation structures are analyzed, which can be used for future cryogenic liquid rocket tanks. Here, rarefied flow simulations are performed for slitted honeycomb structures with and without throughflow of hydrogen gas at a Knudsen number of 1.5 and transitional flow conditions at a Knudsen number of 0.1. The heat transfer results at the honeycomb sandwich are 50 to 70% below empirical relations for heat transfer across flat plates. Throughflow does not affect the heat transfer across the honeycomb because the Peclet number is less than 0.01.</p>","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6914","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Direct Simulation Monte Carlo Method computations are performed to investigate the heat transfer across highly evacuated cryogenic tank insulation structures. These structures usually consist of one cold and one hot wall with a temperature difference up to 260 K surrounding a rarefied gas which originates from permeating or leaking propellant. To validate the flow solver PICLas for this application, heat transfer results across parallel flat plates with nonflowing gaseous hydrogen and methane are compared to empirical relations of rarefied gas heat transfer and reference computations, showing good agreement with a deviation of less than 11%. Because gas flow usually occurs during and after evacuation, the heat transfer and skin friction coefficient in a symmetrical hydrogen channel flow with a wall distance of 30 mm is compared with literature data, showing a good match with a Nusselt number deviation of less than 20%. Furthermore, honeycomb tank insulation structures are analyzed, which can be used for future cryogenic liquid rocket tanks. Here, rarefied flow simulations are performed for slitted honeycomb structures with and without throughflow of hydrogen gas at a Knudsen number of 1.5 and transitional flow conditions at a Knudsen number of 0.1. The heat transfer results at the honeycomb sandwich are 50 to 70% below empirical relations for heat transfer across flat plates. Throughflow does not affect the heat transfer across the honeycomb because the Peclet number is less than 0.01.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.