On Kitaev’s determinant formula

IF 0.7 4区 数学 Q2 MATHEMATICS
A. Elgart, M. Fraas
{"title":"On Kitaev’s determinant formula","authors":"A. Elgart, M. Fraas","doi":"10.1090/spmj/1796","DOIUrl":null,"url":null,"abstract":"<p>A sufficient condition is established under which <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"det left-parenthesis upper A upper B upper A Superscript negative 1 Baseline upper B Superscript negative 1 Baseline right-parenthesis equals 1\"> <mml:semantics> <mml:mrow> <mml:mo movablelimits=\"true\" form=\"prefix\">det</mml:mo> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>A</mml:mi> <mml:mi>B</mml:mi> <mml:msup> <mml:mi>A</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:msup> <mml:mi>B</mml:mi> <mml:mrow> <mml:mo>−<!-- − --></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\det (ABA^{-1}B^{-1})=1</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for a pair of bounded, invertible operators <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper A comma upper B\"> <mml:semantics> <mml:mrow> <mml:mi>A</mml:mi> <mml:mo>,</mml:mo> <mml:mi>B</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">A,B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> on a Hilbert space.</p>","PeriodicalId":51162,"journal":{"name":"St Petersburg Mathematical Journal","volume":"162 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"St Petersburg Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/spmj/1796","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A sufficient condition is established under which det ( A B A 1 B 1 ) = 1 \det (ABA^{-1}B^{-1})=1 for a pair of bounded, invertible operators A , B A,B on a Hilbert space.

关于基塔耶夫行列式
对于希尔伯特空间上的一对有界可逆算子 A , B A,B 来说,det ( A B A - 1 B - 1 ) = 1 \det (ABA^{-1}B^{-1})=1 是一个充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.00
自引率
12.50%
发文量
52
审稿时长
>12 weeks
期刊介绍: This journal is a cover-to-cover translation into English of Algebra i Analiz, published six times a year by the mathematics section of the Russian Academy of Sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信