{"title":"Nonlocal-Interaction Vortices","authors":"Margherita Solci","doi":"10.1137/23m1563438","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3430-3451, June 2024. <br/> Abstract. We consider sequences of quadratic nonlocal functionals, depending on a small parameter [math], that approximate the Dirichlet integral by a well-known result by Bourgain, Brezis, and Mironescu. Similarly to what is done for core-radius approximations to vortex energies in the case of the Dirichlet integral, we further scale such energies by [math] and restrict them to [math]-valued functions. We introduce a notion of convergence of functions to integral currents with respect to which such energies are equicoercive, and show the convergence to a vortex energy, similarly to the limit behavior of Ginzburg–Landau energies at the vortex scaling.","PeriodicalId":51150,"journal":{"name":"SIAM Journal on Mathematical Analysis","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Mathematical Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1563438","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Mathematical Analysis, Volume 56, Issue 3, Page 3430-3451, June 2024. Abstract. We consider sequences of quadratic nonlocal functionals, depending on a small parameter [math], that approximate the Dirichlet integral by a well-known result by Bourgain, Brezis, and Mironescu. Similarly to what is done for core-radius approximations to vortex energies in the case of the Dirichlet integral, we further scale such energies by [math] and restrict them to [math]-valued functions. We introduce a notion of convergence of functions to integral currents with respect to which such energies are equicoercive, and show the convergence to a vortex energy, similarly to the limit behavior of Ginzburg–Landau energies at the vortex scaling.
期刊介绍:
SIAM Journal on Mathematical Analysis (SIMA) features research articles of the highest quality employing innovative analytical techniques to treat problems in the natural sciences. Every paper has content that is primarily analytical and that employs mathematical methods in such areas as partial differential equations, the calculus of variations, functional analysis, approximation theory, harmonic or wavelet analysis, or dynamical systems. Additionally, every paper relates to a model for natural phenomena in such areas as fluid mechanics, materials science, quantum mechanics, biology, mathematical physics, or to the computational analysis of such phenomena.
Submission of a manuscript to a SIAM journal is representation by the author that the manuscript has not been published or submitted simultaneously for publication elsewhere.
Typical papers for SIMA do not exceed 35 journal pages. Substantial deviations from this page limit require that the referees, editor, and editor-in-chief be convinced that the increased length is both required by the subject matter and justified by the quality of the paper.