{"title":"Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data","authors":"Sushovan Majhi","doi":"10.1007/s00454-024-00655-9","DOIUrl":null,"url":null,"abstract":"<p>For a closed Riemannian manifold <span>\\(\\mathcal {M}\\)</span> and a metric space <i>S</i> with a small Gromov–Hausdorff distance to it, Latschev’s theorem guarantees the existence of a sufficiently small scale <span>\\(\\beta >0\\)</span> at which the Vietoris–Rips complex of <i>S</i> is homotopy equivalent to <span>\\(\\mathcal {M}\\)</span>. Despite being regarded as a stepping stone to the topological reconstruction of Riemannian manifolds from noisy data, the result is only a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity scale <span>\\(\\beta \\)</span> in order to provide sampling conditions for <i>S</i> to be homotopy equivalent to <span>\\(\\mathcal {M}\\)</span>. In this paper, we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of <span>\\(\\beta \\)</span> using the sectional curvatures and convexity radius of <span>\\(\\mathcal {M}\\)</span> as the sampling parameters. Our study also delves into the topological recovery of a closed Euclidean submanifold from the Vietoris–Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech complexes, we show that Vietoris–Rips complexes also provide topologically faithful reconstruction guarantees for submanifolds.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00655-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a closed Riemannian manifold \(\mathcal {M}\) and a metric space S with a small Gromov–Hausdorff distance to it, Latschev’s theorem guarantees the existence of a sufficiently small scale \(\beta >0\) at which the Vietoris–Rips complex of S is homotopy equivalent to \(\mathcal {M}\). Despite being regarded as a stepping stone to the topological reconstruction of Riemannian manifolds from noisy data, the result is only a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity scale \(\beta \) in order to provide sampling conditions for S to be homotopy equivalent to \(\mathcal {M}\). In this paper, we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of \(\beta \) using the sectional curvatures and convexity radius of \(\mathcal {M}\) as the sampling parameters. Our study also delves into the topological recovery of a closed Euclidean submanifold from the Vietoris–Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech complexes, we show that Vietoris–Rips complexes also provide topologically faithful reconstruction guarantees for submanifolds.