{"title":"Demystifying Latschev’s Theorem: Manifold Reconstruction from Noisy Data","authors":"Sushovan Majhi","doi":"10.1007/s00454-024-00655-9","DOIUrl":null,"url":null,"abstract":"<p>For a closed Riemannian manifold <span>\\(\\mathcal {M}\\)</span> and a metric space <i>S</i> with a small Gromov–Hausdorff distance to it, Latschev’s theorem guarantees the existence of a sufficiently small scale <span>\\(\\beta >0\\)</span> at which the Vietoris–Rips complex of <i>S</i> is homotopy equivalent to <span>\\(\\mathcal {M}\\)</span>. Despite being regarded as a stepping stone to the topological reconstruction of Riemannian manifolds from noisy data, the result is only a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity scale <span>\\(\\beta \\)</span> in order to provide sampling conditions for <i>S</i> to be homotopy equivalent to <span>\\(\\mathcal {M}\\)</span>. In this paper, we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of <span>\\(\\beta \\)</span> using the sectional curvatures and convexity radius of <span>\\(\\mathcal {M}\\)</span> as the sampling parameters. Our study also delves into the topological recovery of a closed Euclidean submanifold from the Vietoris–Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech complexes, we show that Vietoris–Rips complexes also provide topologically faithful reconstruction guarantees for submanifolds.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"24 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00655-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
For a closed Riemannian manifold \(\mathcal {M}\) and a metric space S with a small Gromov–Hausdorff distance to it, Latschev’s theorem guarantees the existence of a sufficiently small scale \(\beta >0\) at which the Vietoris–Rips complex of S is homotopy equivalent to \(\mathcal {M}\). Despite being regarded as a stepping stone to the topological reconstruction of Riemannian manifolds from noisy data, the result is only a qualitative guarantee. Until now, it had been elusive how to quantitatively choose such a proximity scale \(\beta \) in order to provide sampling conditions for S to be homotopy equivalent to \(\mathcal {M}\). In this paper, we prove a stronger and pragmatic version of Latschev’s theorem, facilitating a simple description of \(\beta \) using the sectional curvatures and convexity radius of \(\mathcal {M}\) as the sampling parameters. Our study also delves into the topological recovery of a closed Euclidean submanifold from the Vietoris–Rips complexes of a Hausdorff close Euclidean subset. As already known for Čech complexes, we show that Vietoris–Rips complexes also provide topologically faithful reconstruction guarantees for submanifolds.
期刊介绍:
Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.