Using biophysical modelling and marine connectivity to assess the risk of natural dispersal of non-indigenous species to comply with the Ballast Water Management Convention
Flemming Thorbjørn Hansen, Ane Pastor, Asbjørn Christensen, Frank Stuer-Lauridsen
{"title":"Using biophysical modelling and marine connectivity to assess the risk of natural dispersal of non-indigenous species to comply with the Ballast Water Management Convention","authors":"Flemming Thorbjørn Hansen, Ane Pastor, Asbjørn Christensen, Frank Stuer-Lauridsen","doi":"10.1007/s10530-024-03327-0","DOIUrl":null,"url":null,"abstract":"<p>The introduction of Marine Non-Indigenous Species (NIS) poses a significant threat to global marine biodiversity and ecosystems. To mitigate this risk, the Ballast Water Management Convention (BWMC) was adopted by the UN International Maritime Organisation (IMO), setting strict criteria for discharges of ballast water. However, the BWMC permits exemptions for shipping routes operating within a geographical area, known as a Same-Risk-Area (SRA). An SRA can be established in areas where a risk assessment (RA) can conclude that the spread of NIS via ballast water is low relative to the predicted natural dispersal. Despite the BWMC's requirement for RAs to be based on modelling of the natural dispersal of NIS, no standard procedures have been established. This paper presents a methodology utilizing biophysical modelling and marine connectivity analyses to conduct SRA RA and delineation. Focusing on the Kattegat and Øresund connecting the North Sea and Baltic Sea, we examine two SRA candidates spanning Danish and Swedish waters. We provide an example on how to conduct an RA including an RA summary, and addressing findings, challenges, and prospects. Our study aims to advance the development and adoption of consistent, transparent, and scientifically robust SRA assessments for effective ballast water management.</p>","PeriodicalId":9202,"journal":{"name":"Biological Invasions","volume":"24 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Invasions","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10530-024-03327-0","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0
Abstract
The introduction of Marine Non-Indigenous Species (NIS) poses a significant threat to global marine biodiversity and ecosystems. To mitigate this risk, the Ballast Water Management Convention (BWMC) was adopted by the UN International Maritime Organisation (IMO), setting strict criteria for discharges of ballast water. However, the BWMC permits exemptions for shipping routes operating within a geographical area, known as a Same-Risk-Area (SRA). An SRA can be established in areas where a risk assessment (RA) can conclude that the spread of NIS via ballast water is low relative to the predicted natural dispersal. Despite the BWMC's requirement for RAs to be based on modelling of the natural dispersal of NIS, no standard procedures have been established. This paper presents a methodology utilizing biophysical modelling and marine connectivity analyses to conduct SRA RA and delineation. Focusing on the Kattegat and Øresund connecting the North Sea and Baltic Sea, we examine two SRA candidates spanning Danish and Swedish waters. We provide an example on how to conduct an RA including an RA summary, and addressing findings, challenges, and prospects. Our study aims to advance the development and adoption of consistent, transparent, and scientifically robust SRA assessments for effective ballast water management.
期刊介绍:
Biological Invasions publishes research and synthesis papers on patterns and processes of biological invasions in terrestrial, freshwater, and marine (including brackish) ecosystems. Also of interest are scholarly papers on management and policy issues as they relate to conservation programs and the global amelioration or control of invasions. The journal will consider proposals for special issues resulting from conferences or workshops on invasions.There are no page charges to publish in this journal.