The doomsday of black hole evaporation

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2024-05-13 DOI:10.1209/0295-5075/ad3b36
Shao-Jiang Wang
{"title":"The doomsday of black hole evaporation","authors":"Shao-Jiang Wang","doi":"10.1209/0295-5075/ad3b36","DOIUrl":null,"url":null,"abstract":"By assuming simultaneously the unitarity of the Hawking evaporation and the universality of Bekenstein entropy bound as well as the validity of cosmic censorship conjecture, we find that the black hole evaporation rate could evolve from the usual inverse square law in black hole mass into a constant evaporation rate near the end of the Hawking evaporation before quantum gravity could come into play, inferring a slightly longer lifetime for lighter black holes.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"45 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad3b36","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By assuming simultaneously the unitarity of the Hawking evaporation and the universality of Bekenstein entropy bound as well as the validity of cosmic censorship conjecture, we find that the black hole evaporation rate could evolve from the usual inverse square law in black hole mass into a constant evaporation rate near the end of the Hawking evaporation before quantum gravity could come into play, inferring a slightly longer lifetime for lighter black holes.
黑洞蒸发的末日
通过同时假定霍金蒸发的单位性、贝肯斯坦熵约束的普遍性以及宇宙审查猜想的有效性,我们发现在量子引力发挥作用之前,黑洞蒸发率可以从通常的黑洞质量平方反比定律演变为霍金蒸发末期的恒定蒸发率,从而推断出较轻黑洞的寿命会稍长一些。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信