Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\epsilon }$$

Pub Date : 2024-05-11 DOI:10.1007/s00454-024-00654-w
Janusz Januszewski, Łukasz Zielonka
{"title":"Perfectly Packing an Equilateral Triangle by Equilateral Triangles of Sidelengths $$n^{-1/2-\\epsilon }$$","authors":"Janusz Januszewski, Łukasz Zielonka","doi":"10.1007/s00454-024-00654-w","DOIUrl":null,"url":null,"abstract":"<p>Equilateral triangles of sidelengths 1, <span>\\(2^{-t}\\)</span>, <span>\\(3^{-t}\\)</span>, <span>\\(4^{-t},\\ldots \\ \\)</span> can be packed perfectly into an equilateral triangle, provided that <span>\\(\\ 1/2&lt;t \\le 37/72\\)</span>. Moreover, for <i>t</i> slightly greater than 1/2, squares of sidelengths 1, <span>\\(2^{-t}\\)</span>, <span>\\(3^{-t}\\)</span>, <span>\\(4^{-t},\\ldots \\ \\)</span> can be packed perfectly into a square <span>\\(S_t\\)</span> in such a way that some squares have a side parallel to a diagonal of <span>\\(S_t\\)</span> and the remaining squares have a side parallel to a side of <span>\\(S_t\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00654-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Equilateral triangles of sidelengths 1, \(2^{-t}\), \(3^{-t}\), \(4^{-t},\ldots \ \) can be packed perfectly into an equilateral triangle, provided that \(\ 1/2<t \le 37/72\). Moreover, for t slightly greater than 1/2, squares of sidelengths 1, \(2^{-t}\), \(3^{-t}\), \(4^{-t},\ldots \ \) can be packed perfectly into a square \(S_t\) in such a way that some squares have a side parallel to a diagonal of \(S_t\) and the remaining squares have a side parallel to a side of \(S_t\).

Abstract Image

分享
查看原文
用边长为 $$n^{-1/2-\epsilon }$ 的等边三角形完美包装等边三角形
边长为 1、(2^{-t}\)、(3^{-t}\)、(4^{-t},\ldots \)的等边三角形可以完美地组合成一个等边三角形,前提是(\1/2<t \le 37/72)。此外,对于t略大于1/2的情况,边长为1、(2^{-t}\)、(3^{-t}\)、(4^{-t},\ldots \)的正方形可以完美地打包成一个正方形(S_t\),使得一些正方形的边平行于(S_t\)的对角线,其余的正方形的边平行于(S_t\)的边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信