{"title":"Solutions with moving singularities for a one-dimensional nonlinear diffusion equation","authors":"Marek Fila, Jin Takahashi, Eiji Yanagida","doi":"10.1007/s00208-024-02882-0","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to study singular solutions for a one-dimensional nonlinear diffusion equation. Due to slow diffusion near singular points, there exists a solution with a singularity at a prescribed position depending on time. To study properties of such singular solutions, we define a minimal singular solution as a limit of a sequence of approximate solutions with large Dirichlet data. Applying the comparison principle and the intersection number argument, we discuss the existence and uniqueness of a singular solution for an initial-value problem, the profile near singular points and large-time behavior of solutions. We also give some results concerning the appearance of a burning core, convergence to traveling waves and the existence of an entire solution.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"10 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02882-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The aim of this paper is to study singular solutions for a one-dimensional nonlinear diffusion equation. Due to slow diffusion near singular points, there exists a solution with a singularity at a prescribed position depending on time. To study properties of such singular solutions, we define a minimal singular solution as a limit of a sequence of approximate solutions with large Dirichlet data. Applying the comparison principle and the intersection number argument, we discuss the existence and uniqueness of a singular solution for an initial-value problem, the profile near singular points and large-time behavior of solutions. We also give some results concerning the appearance of a burning core, convergence to traveling waves and the existence of an entire solution.
期刊介绍:
Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin.
The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin.
Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.