A guide to successful management of collaborative partnerships in quantitative research: An illustration of the science of team science

Pub Date : 2024-05-09 DOI:10.1002/sta4.674
Alyssa Platt, Tracy Truong, Mary Boulos, Nichole E. Carlson, Manisha Desai, Monica M. Elam, Emily Slade, Alexandra L. Hanlon, Jillian H. Hurst, Maren K. Olsen, Laila M. Poisson, Lacey Rende, Gina‐Maria Pomann
{"title":"A guide to successful management of collaborative partnerships in quantitative research: An illustration of the science of team science","authors":"Alyssa Platt, Tracy Truong, Mary Boulos, Nichole E. Carlson, Manisha Desai, Monica M. Elam, Emily Slade, Alexandra L. Hanlon, Jillian H. Hurst, Maren K. Olsen, Laila M. Poisson, Lacey Rende, Gina‐Maria Pomann","doi":"10.1002/sta4.674","DOIUrl":null,"url":null,"abstract":"Data‐intensive research continues to expand with the goal of improving healthcare delivery, clinical decision‐making, and patient outcomes. Quantitative scientists, such as biostatisticians, epidemiologists, and informaticists, are tasked with turning data into health knowledge. In academic health centres, quantitative scientists are critical to the missions of biomedical discovery and improvement of health. Many academic health centres have developed centralized Quantitative Science Units which foster dual goals of professional development of quantitative scientists and producing high quality, reproducible domain research. Such units then develop teams of quantitative scientists who can collaborate with researchers. However, existing literature does not provide guidance on how such teams are formed or how to manage and sustain them. Leaders of Quantitative Science Units across six institutions formed a working group to examine common practices and tools that can serve as best practices for Quantitative Science Units that wish to achieve these dual goals through building long‐term partnerships with researchers. The results of this working group are presented to provide tools and guidance for Quantitative Science Units challenged with developing, managing, and evaluating Quantitative Science Teams. This guidance aims to help Quantitative Science Units effectively participate in and enhance the research that is conducted throughout the academic health centre—shaping their resources to fit evolving research needs.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/sta4.674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data‐intensive research continues to expand with the goal of improving healthcare delivery, clinical decision‐making, and patient outcomes. Quantitative scientists, such as biostatisticians, epidemiologists, and informaticists, are tasked with turning data into health knowledge. In academic health centres, quantitative scientists are critical to the missions of biomedical discovery and improvement of health. Many academic health centres have developed centralized Quantitative Science Units which foster dual goals of professional development of quantitative scientists and producing high quality, reproducible domain research. Such units then develop teams of quantitative scientists who can collaborate with researchers. However, existing literature does not provide guidance on how such teams are formed or how to manage and sustain them. Leaders of Quantitative Science Units across six institutions formed a working group to examine common practices and tools that can serve as best practices for Quantitative Science Units that wish to achieve these dual goals through building long‐term partnerships with researchers. The results of this working group are presented to provide tools and guidance for Quantitative Science Units challenged with developing, managing, and evaluating Quantitative Science Teams. This guidance aims to help Quantitative Science Units effectively participate in and enhance the research that is conducted throughout the academic health centre—shaping their resources to fit evolving research needs.
分享
查看原文
成功管理定量研究中的合作伙伴关系指南:团队科学说明
数据密集型研究不断扩大,其目标是改善医疗服务、临床决策和患者疗效。定量科学家,如生物统计学家、流行病学家和信息学家,负责将数据转化为健康知识。在学术健康中心,定量科学家对生物医学发现和改善健康状况的使命至关重要。许多学术健康中心都建立了中央定量科学部门,以促进定量科学家的专业发展和开展高质量、可重复的领域研究为双重目标。这些单位随后发展了可与研究人员合作的定量科学家团队。然而,现有文献并未就如何组建此类团队或如何管理和维持团队提供指导。六所院校定量科学部门的领导组成了一个工作小组,研究共同的实践和工具,作为希望通过与研究人员建立长期合作关系来实现上述双重目标的定量科学部门的最佳实践。本报告介绍了该工作组的成果,旨在为面临发展、管理和评估定量科学团队挑战的定量科学部门提供工具和指导。该指南旨在帮助定量科学部门有效地参与并加强整个学术健康中心的研究工作--根据不断变化的研究需求调整其资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信