T. R. Zakirov, O. S. Zhuchkova, M. G. Khramchenkov
{"title":"Mathematical Model for Dynamic Adsorption with Immiscible Multiphase Flows in Three-dimensional Porous Media","authors":"T. R. Zakirov, O. S. Zhuchkova, M. G. Khramchenkov","doi":"10.1134/s1995080224600134","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we present the mathematical model describing the dynamic adsorption processes in three-dimensional porous media. The novelty of this model lies in the ability to study the mass transfer processes with immiscible multiphase flows in porous media. The governing equations describing fluid flow and convective-diffusion of the active component are based on the lattice Boltzmann equations. The phenomena on the interface between two fluids and between fluids and solid phase, including interfacial tension and wetting effects, are described using the most modern version of the color-gradient method. The kinetic of the mass transfer between active component and adsorbent particles is described using the Langmuir adsorption equation. The numerical algorithm has been validated on two benchmarks including the immiscibility of the active component and the displaced fluid, as well as the problem of mass conservation of the active component during its adsorption and transport in porous media. The mathematical model has been adapted for porous media presented by X-ray computed tomography images of natural porous media.</p>","PeriodicalId":46135,"journal":{"name":"Lobachevskii Journal of Mathematics","volume":"17 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lobachevskii Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1995080224600134","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we present the mathematical model describing the dynamic adsorption processes in three-dimensional porous media. The novelty of this model lies in the ability to study the mass transfer processes with immiscible multiphase flows in porous media. The governing equations describing fluid flow and convective-diffusion of the active component are based on the lattice Boltzmann equations. The phenomena on the interface between two fluids and between fluids and solid phase, including interfacial tension and wetting effects, are described using the most modern version of the color-gradient method. The kinetic of the mass transfer between active component and adsorbent particles is described using the Langmuir adsorption equation. The numerical algorithm has been validated on two benchmarks including the immiscibility of the active component and the displaced fluid, as well as the problem of mass conservation of the active component during its adsorption and transport in porous media. The mathematical model has been adapted for porous media presented by X-ray computed tomography images of natural porous media.
期刊介绍:
Lobachevskii Journal of Mathematics is an international peer reviewed journal published in collaboration with the Russian Academy of Sciences and Kazan Federal University. The journal covers mathematical topics associated with the name of famous Russian mathematician Nikolai Lobachevsky (Lobachevskii). The journal publishes research articles on geometry and topology, algebra, complex analysis, functional analysis, differential equations and mathematical physics, probability theory and stochastic processes, computational mathematics, mathematical modeling, numerical methods and program complexes, computer science, optimal control, and theory of algorithms as well as applied mathematics. The journal welcomes manuscripts from all countries in the English language.