{"title":"Effect of annealing treatment of hot-rolled AZ31 magnesium alloy on properties and stress corrosion resistance of MAO coatings","authors":"Feng Zhou, S. S. Lu, B. Jiang, R.G. Song","doi":"10.1108/acmm-01-2024-2954","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.</p><!--/ Abstract__block -->","PeriodicalId":8217,"journal":{"name":"Anti-corrosion Methods and Materials","volume":"24 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-corrosion Methods and Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1108/acmm-01-2024-2954","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose
This study aims to study the formation mechanism of micro-arc oxidation (MAO) coating on AZ31 magnesium alloy and how the annealing process affects its corrosion resistance.
Design/methodology/approach
This study involved immersion experiments, electrochemical experiments and slow strain rate tensile experiments, along with scanning electron microscopy, optical microscopy observation and X-ray diffraction analysis.
Findings
The findings suggest that annealing treatment can refine the grain size of AZ31 magnesium alloy to an average of 6.9 µm at 300°C. The change in grain size leads to a change in conductivity, which affects the performance of MAO coatings. The MAO coating obtained by annealing the substrate at 300°C has smaller pores and porosity, resulting in better adhesion and wear resistance.
Originality/value
The coating acts as a barrier to prevent corrosive substances from entering the substrate. However, the smaller pores and porosity reduce the channels for the corrosive solution to pass through the coating. When the coating cracks or falls off, the corrosive medium and substrate come into direct contact. Smaller and uniform grains have better corrosion resistance.
期刊介绍:
Anti-Corrosion Methods and Materials publishes a broad coverage of the materials and techniques employed in corrosion prevention. Coverage is essentially of a practical nature and designed to be of material benefit to those working in the field. Proven applications are covered together with company news and new product information. Anti-Corrosion Methods and Materials now also includes research articles that reflect the most interesting and strategically important research and development activities from around the world.
Every year, industry pays a massive and rising cost for its corrosion problems. Research and development into new materials, processes and initiatives to combat this loss is increasing, and new findings are constantly coming to light which can help to beat corrosion problems throughout industry. This journal uniquely focuses on these exciting developments to make essential reading for anyone aiming to regain profits lost through corrosion difficulties.
• New methods, materials and software
• New developments in research and industry
• Stainless steels
• Protection of structural steelwork
• Industry update, conference news, dates and events
• Environmental issues
• Health & safety, including EC regulations
• Corrosion monitoring and plant health assessment
• The latest equipment and processes
• Corrosion cost and corrosion risk management.