{"title":"Convergence proof for the GenCol algorithm in the case of two-marginal optimal transport","authors":"Gero Friesecke, Maximilian Penka","doi":"10.1090/mcom/3968","DOIUrl":null,"url":null,"abstract":"<p>The recently introduced Genetic Column Generation (GenCol) algorithm has been numerically observed to efficiently and accurately compute high-dimensional optimal transport (OT) plans for general multi-marginal problems, but theoretical results on the algorithm have hitherto been lacking. The algorithm solves the OT linear program on a dynamically updated low-dimensional submanifold consisting of sparse plans. The submanifold dimension exceeds the sparse support of optimal plans only by a fixed factor <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta\"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we prove that for <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta \\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and in the two-marginal case, GenCol always converges to an exact solution, for arbitrary costs and marginals. The proof relies on the concept of c-cyclical monotonicity. As an offshoot, GenCol rigorously reduces the data complexity of numerically solving two-marginal OT problems from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis script l squared right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mn>2</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\ell ^2)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis script l right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(\\ell )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> without any loss in accuracy, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"script l\"> <mml:semantics> <mml:mi>ℓ<!-- ℓ --></mml:mi> <mml:annotation encoding=\"application/x-tex\">\\ell</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the number of discretization points for a single marginal. At the end of the paper we also present some insights into the convergence behavior in the multi-marginal case.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"65 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3968","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The recently introduced Genetic Column Generation (GenCol) algorithm has been numerically observed to efficiently and accurately compute high-dimensional optimal transport (OT) plans for general multi-marginal problems, but theoretical results on the algorithm have hitherto been lacking. The algorithm solves the OT linear program on a dynamically updated low-dimensional submanifold consisting of sparse plans. The submanifold dimension exceeds the sparse support of optimal plans only by a fixed factor β\beta. Here we prove that for β≥2\beta \geq 2 and in the two-marginal case, GenCol always converges to an exact solution, for arbitrary costs and marginals. The proof relies on the concept of c-cyclical monotonicity. As an offshoot, GenCol rigorously reduces the data complexity of numerically solving two-marginal OT problems from O(ℓ2)O(\ell ^2) to O(ℓ)O(\ell ) without any loss in accuracy, where ℓ\ell is the number of discretization points for a single marginal. At the end of the paper we also present some insights into the convergence behavior in the multi-marginal case.
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.