Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Hiroshi Sugiura, Takemitsu Hasegawa
{"title":"Error bounds for Gauss–Jacobi quadrature of analytic functions on an ellipse","authors":"Hiroshi Sugiura, Takemitsu Hasegawa","doi":"10.1090/mcom/3977","DOIUrl":null,"url":null,"abstract":"<p>For the Gauss–Jacobi quadrature on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-bracket negative 1 comma 1 right-bracket\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">[</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> <mml:mo>,</mml:mo> <mml:mn>1</mml:mn> <mml:mo stretchy=\"false\">]</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">[-1,1]</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"left-parenthesis 1 minus t right-parenthesis Superscript alpha Baseline left-parenthesis 1 plus t right-parenthesis Superscript beta\"> <mml:semantics> <mml:mrow> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>−</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>α</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mn>1</mml:mn> <mml:mo>+</mml:mo> <mml:mi>t</mml:mi> <mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mi>β</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">(1-t)^\\alpha (1+t)^\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"beta greater-than negative 1\"> <mml:semantics> <mml:mrow> <mml:mi>β</mml:mi> <mml:mo>&gt;</mml:mo> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\beta &gt;-1</mml:annotation> </mml:semantics> </mml:math> </inline-formula>) except for the Gegenbauer weight (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"alpha equals beta\"> <mml:semantics> <mml:mrow> <mml:mi>α</mml:mi> <mml:mo>=</mml:mo> <mml:mi>β</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\alpha =\\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula>), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"one fourth pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>1</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {1}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"three fourths pi\"> <mml:semantics> <mml:mrow> <mml:mstyle displaystyle=\"false\" scriptlevel=\"0\"> <mml:mfrac> <mml:mn>3</mml:mn> <mml:mn>4</mml:mn> </mml:mfrac> </mml:mstyle> <mml:mi>π</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\tfrac {3}{4}\\pi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"39 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3977","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For the Gauss–Jacobi quadrature on [ 1 , 1 ] [-1,1] , the location is estimated where the kernel of the error functional for functions analytic on an ellipse and its interior in the complex plane attains its maximum modulus. For the Jacobi weight ( 1 t ) α ( 1 + t ) β (1-t)^\alpha (1+t)^\beta ( α > 1 \alpha >-1 , β > 1 \beta >-1 ) except for the Gegenbauer weight ( α = β \alpha =\beta ), the location is the intersection point of the ellipse with the real axis in the complex plane. For the Gegenbauer weight, it is the intersection point(s) with either the real or the imaginary axis or other axes with angle 1 4 π \tfrac {1}{4}\pi and 3 4 π \tfrac {3}{4}\pi . Our results support the empirical results provided by Gautschi and Varga [SIAM J. Numer. Anal, 20 (1983), pp. 1170–1186] for the Jacobi weight, the Gegenbauer weight and the Legendre weight. The results obtained are also illustrated numerically.

椭圆上解析函数的高斯-雅可比正交误差范围
对于 [ - 1 , 1 ] [-1,1] 上的高斯-雅可比正交,在复平面内椭圆及其内部解析函数的误差函数核达到最大模的位置进行估计。对于雅可比权重 ( 1 - t ) α ( 1 + t ) β (1-t)^\alpha (1+t)^\beta ( α > - 1 \alpha >-1 , β > - 1 \beta >-1 ) 除了格根鲍尔权重 ( α = β \alpha =\beta ) 以外,位置都是椭圆与复平面实轴的交点。对于格根鲍尔权重,它是与实轴或虚轴或其他轴的交点,角度分别为 1 4 π \tfrac {1}{4}\pi 和 3 4 π \tfrac {3}{4}\pi 。我们的结果支持 Gautschi 和 Varga [SIAM J. Numer. Anal, 20 (1983), pp.本文还对所获得的结果进行了数值说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信