{"title":"A case study of nutrient retranslocation in four deciduous tree species of West Bengal tropical forest, India","authors":"Chittaranjan Das, Naba Kumar Mondal","doi":"10.1007/s42965-024-00352-x","DOIUrl":null,"url":null,"abstract":"<p>The internal retranslocation of nutrients of senescence leaves is a significant aspect of nutrient dynamics in a forest ecosystems. The present investigation was carried out by considering four types of deciduous tree species (<i>Shorea robusta</i>, <i>Tectona grandis</i>, <i>Schleichera oleosa</i>, and <i>Albizia lebbeck</i>) to assess nutrient resorption efficiency (NuRE) and resorption proficiency (NuRP) of nitrogen (N), phosphorous (P), and potassium (K), as well as seasonal changes of nutrient concentration in green and senescence leaves. Green and senescent leaves were sampled and analysed for NPK concentration by standard methods. Experimental results revealed that the higher nutrition contents were recorded in green leaves than senescence leaves. The highest N and P resorption efficiency (RE) were recorded for <i>S. robusta</i> and lowest for <i>T. grandis</i> (46.74%) and <i>A. lebbeck</i> (37.93%) respectively, whereas <i>T. grandis</i> exhibited the highest resorption efficiency of K (47.67%) and lowest for <i>A. lebbeck</i> (40.29%). Furthermore, the highest percentage of nutrients from mature leaves and soil were transported to the tree body during senescence were 47.0% (<i>S. oleosa</i>), and 21.29% (<i>T. grandis</i>), respectively. Moreover, nutrients were retranslocated from senescent leaves in the order as N > P > K. On the other hand, the nutrient resorption proficiency (NuRP) was highest with respect to N (53.26%) and P (62.07%) for <i>T. grandis</i> and K (59.71%) for <i>A. lebbeck</i>. Similarly, the lowest with respect to N (44.27%) and P (50.91%) for <i>S. robusta</i>, and K (52.33%) for <i>T. grandis</i>. Therefore, it can be concluded that changes in nutrient concentrations in green and senescence leaves could be the possible reason for different retranslocation efficiency.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42965-024-00352-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The internal retranslocation of nutrients of senescence leaves is a significant aspect of nutrient dynamics in a forest ecosystems. The present investigation was carried out by considering four types of deciduous tree species (Shorea robusta, Tectona grandis, Schleichera oleosa, and Albizia lebbeck) to assess nutrient resorption efficiency (NuRE) and resorption proficiency (NuRP) of nitrogen (N), phosphorous (P), and potassium (K), as well as seasonal changes of nutrient concentration in green and senescence leaves. Green and senescent leaves were sampled and analysed for NPK concentration by standard methods. Experimental results revealed that the higher nutrition contents were recorded in green leaves than senescence leaves. The highest N and P resorption efficiency (RE) were recorded for S. robusta and lowest for T. grandis (46.74%) and A. lebbeck (37.93%) respectively, whereas T. grandis exhibited the highest resorption efficiency of K (47.67%) and lowest for A. lebbeck (40.29%). Furthermore, the highest percentage of nutrients from mature leaves and soil were transported to the tree body during senescence were 47.0% (S. oleosa), and 21.29% (T. grandis), respectively. Moreover, nutrients were retranslocated from senescent leaves in the order as N > P > K. On the other hand, the nutrient resorption proficiency (NuRP) was highest with respect to N (53.26%) and P (62.07%) for T. grandis and K (59.71%) for A. lebbeck. Similarly, the lowest with respect to N (44.27%) and P (50.91%) for S. robusta, and K (52.33%) for T. grandis. Therefore, it can be concluded that changes in nutrient concentrations in green and senescence leaves could be the possible reason for different retranslocation efficiency.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.