Temporal approximation of stochastic evolution equations with irregular nonlinearities

IF 1.1 3区 数学 Q1 MATHEMATICS
Katharina Klioba, Mark Veraar
{"title":"Temporal approximation of stochastic evolution equations with irregular nonlinearities","authors":"Katharina Klioba, Mark Veraar","doi":"10.1007/s00028-024-00975-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on 2-smooth Banach spaces <i>X</i>. The leading operator <i>A</i> is assumed to generate a strongly continuous semigroup <i>S</i> on <i>X</i>, and the focus is on non-parabolic problems. The main result concerns convergence of the <i>uniform strong error</i></p><span>$$\\begin{aligned} \\textrm{E}_{k}^{\\infty } {:}{=}\\Big (\\mathbb {E}\\sup _{j\\in \\{0, \\ldots , N_k\\}} \\Vert U(t_j) - U^j\\Vert _X^p\\Big )^{1/p} \\rightarrow 0\\quad (k \\rightarrow 0), \\end{aligned}$$</span><p>where <span>\\(p \\in [2,\\infty )\\)</span>, <i>U</i> is the mild solution, <span>\\(U^j\\)</span> is obtained from a time discretisation scheme, <i>k</i> is the step size, and <span>\\(N_k = T/k\\)</span> for final time <span>\\(T&gt;0\\)</span>. This generalises previous results to a larger class of admissible nonlinearities and noise, as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to 2-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler <i>pointwise strong error</i></p><span>$$\\begin{aligned} \\textrm{E}_k {:}{=}\\bigg (\\sup _{j\\in \\{0,\\ldots ,N_k\\}}\\mathbb {E}\\Vert U(t_j) - U^{j}\\Vert _X^p\\bigg )^{1/p}, \\end{aligned}$$</span><p>which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schrödinger equation, for which previous convergence results were not applicable.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00975-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove convergence for contractive time discretisation schemes for semi-linear stochastic evolution equations with irregular Lipschitz nonlinearities, initial values, and additive or multiplicative Gaussian noise on 2-smooth Banach spaces X. The leading operator A is assumed to generate a strongly continuous semigroup S on X, and the focus is on non-parabolic problems. The main result concerns convergence of the uniform strong error

$$\begin{aligned} \textrm{E}_{k}^{\infty } {:}{=}\Big (\mathbb {E}\sup _{j\in \{0, \ldots , N_k\}} \Vert U(t_j) - U^j\Vert _X^p\Big )^{1/p} \rightarrow 0\quad (k \rightarrow 0), \end{aligned}$$

where \(p \in [2,\infty )\), U is the mild solution, \(U^j\) is obtained from a time discretisation scheme, k is the step size, and \(N_k = T/k\) for final time \(T>0\). This generalises previous results to a larger class of admissible nonlinearities and noise, as well as rough initial data from the Hilbert space case to more general spaces. We present a proof based on a regularisation argument. Within this scope, we extend previous quantified convergence results for more regular nonlinearity and noise from Hilbert to 2-smooth Banach spaces. The uniform strong error cannot be estimated in terms of the simpler pointwise strong error

$$\begin{aligned} \textrm{E}_k {:}{=}\bigg (\sup _{j\in \{0,\ldots ,N_k\}}\mathbb {E}\Vert U(t_j) - U^{j}\Vert _X^p\bigg )^{1/p}, \end{aligned}$$

which most of the existing literature is concerned with. Our results are illustrated for a variant of the Schrödinger equation, for which previous convergence results were not applicable.

具有不规则非线性的随机演化方程的时间逼近
本文证明了在 2 平滑巴拿赫空间 X 上具有不规则 Lipschitz 非线性、初值和加性或乘性高斯噪声的半线性随机演化方程的收缩时间离散化方案的收敛性。主要结果涉及均匀强误差$$begin{aligned}的收敛性。\textrm{E}_{k}^{infty }{:}{=}\Big (\mathbb {E}\sup _{j\in \{0, \ldots , N_k\}}\U(t_j) - U^j\Vert _X^p\Big )^{1/p}\rightarrow 0\quad (k rightarrow 0),end{aligned}$$其中 \(p \in [2,\infty )\), U 是温和解,\(U^j\) 是通过时间离散化方案得到的,k 是步长,\(N_k = T/k\) 为最终时间 \(T>0/)。这将之前的结果推广到了更大类的可接受非线性和噪声,以及从希尔伯特空间情况到更一般空间的粗糙初始数据。我们提出了一个基于正则化论证的证明。在此范围内,我们扩展了之前从希尔伯特空间到 2 平滑巴拿赫空间的更多规则非线性和噪声的量化收敛结果。均匀强误差不能用更简单的点对点强误差$$\begin{aligned}来估计。\textrm{E}_k {:}{=}\bigg (\sup _{j\in \{0,\ldots ,N_k\}}\mathbb {E}\Vert U(t_j) - U^{j}\Vert _X^p\bigg )^{1/p}, \end{aligned}$$ 大部分现有文献都关注这个问题。我们的结果针对薛定谔方程的一个变体进行了说明,以前的收敛结果并不适用于该变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信