Stochastic alternating structure-adapted proximal gradient descent method with variance reduction for nonconvex nonsmooth optimization

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Zehui Jia, Wenxing Zhang, Xingju Cai, Deren Han
{"title":"Stochastic alternating structure-adapted proximal gradient descent method with variance reduction for nonconvex nonsmooth optimization","authors":"Zehui Jia, Wenxing Zhang, Xingju Cai, Deren Han","doi":"10.1090/mcom/3867","DOIUrl":null,"url":null,"abstract":"<p>The blocky optimization has gained a significant amount of attention in far-reaching practical applications. Following the recent work (M. Nikolova and P. Tan [SIAM J. Optim. 29 (2019), pp. 2053–2078]) on solving a class of nonconvex nonsmooth optimization, we develop a stochastic alternating structure-adapted proximal (s-ASAP) gradient descent method for solving blocky optimization problems. By deploying some state-of-the-art variance reduced gradient estimators (rather than full gradient) in stochastic optimization, the s-ASAP method is applicable to nonconvex optimization whose objective is the sum of a nonsmooth data-fitting term and a finite number of differentiable functions. The sublinear convergence rate of s-ASAP is built upon the proximal point algorithmic framework, whilst the linear convergence rate of s-ASAP is achieved under the error bound condition. Furthermore, the convergence of the sequence produced by s-ASAP is established under the Kurdyka-Łojasiewicz property. Preliminary numerical simulations on some image processing applications demonstrate the compelling performance of the proposed method.</p>","PeriodicalId":18456,"journal":{"name":"Mathematics of Computation","volume":"44 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/mcom/3867","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The blocky optimization has gained a significant amount of attention in far-reaching practical applications. Following the recent work (M. Nikolova and P. Tan [SIAM J. Optim. 29 (2019), pp. 2053–2078]) on solving a class of nonconvex nonsmooth optimization, we develop a stochastic alternating structure-adapted proximal (s-ASAP) gradient descent method for solving blocky optimization problems. By deploying some state-of-the-art variance reduced gradient estimators (rather than full gradient) in stochastic optimization, the s-ASAP method is applicable to nonconvex optimization whose objective is the sum of a nonsmooth data-fitting term and a finite number of differentiable functions. The sublinear convergence rate of s-ASAP is built upon the proximal point algorithmic framework, whilst the linear convergence rate of s-ASAP is achieved under the error bound condition. Furthermore, the convergence of the sequence produced by s-ASAP is established under the Kurdyka-Łojasiewicz property. Preliminary numerical simulations on some image processing applications demonstrate the compelling performance of the proposed method.

针对非凸非平滑优化的随机交替结构适应近端梯度下降法与方差缩小法
块状优化在意义深远的实际应用中获得了大量关注。继最近关于求解一类非凸非光滑优化的工作(M. Nikolova 和 P. Tan [SIAM J. Optim. 29 (2019),pp. 2053-2078])之后,我们开发了一种用于求解块状优化问题的随机交替结构适应近似(s-ASAP)梯度下降方法。通过采用随机优化中一些最先进的方差缩小梯度估计器(而不是全梯度),s-ASAP 方法适用于目标为非光滑数据拟合项与有限个可微分函数之和的非凸优化。s-ASAP的亚线性收敛率建立在近点算法框架之上,而s-ASAP的线性收敛率是在误差约束条件下实现的。此外,s-ASAP 生成的序列的收敛性是在 Kurdyka-Łojasiewicz 属性下确定的。对一些图像处理应用的初步数值模拟证明了所提方法的卓越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematics of Computation
Mathematics of Computation 数学-应用数学
CiteScore
3.90
自引率
5.00%
发文量
55
审稿时长
7.0 months
期刊介绍: All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are. This journal is devoted to research articles of the highest quality in computational mathematics. Areas covered include numerical analysis, computational discrete mathematics, including number theory, algebra and combinatorics, and related fields such as stochastic numerical methods. Articles must be of significant computational interest and contain original and substantial mathematical analysis or development of computational methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信