Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction

Aleix Lafita, Ferran Gonzalez, Mahmoud Hossam, Paul Smyth, Jacob Deasy, Ari Allyn-Feuer, Daniel Seaton, Stephen Young
{"title":"Fine-tuning Protein Language Models with Deep Mutational Scanning improves Variant Effect Prediction","authors":"Aleix Lafita, Ferran Gonzalez, Mahmoud Hossam, Paul Smyth, Jacob Deasy, Ari Allyn-Feuer, Daniel Seaton, Stephen Young","doi":"arxiv-2405.06729","DOIUrl":null,"url":null,"abstract":"Protein Language Models (PLMs) have emerged as performant and scalable tools\nfor predicting the functional impact and clinical significance of\nprotein-coding variants, but they still lag experimental accuracy. Here, we\npresent a novel fine-tuning approach to improve the performance of PLMs with\nexperimental maps of variant effects from Deep Mutational Scanning (DMS) assays\nusing a Normalised Log-odds Ratio (NLR) head. We find consistent improvements\nin a held-out protein test set, and on independent DMS and clinical variant\nannotation benchmarks from ProteinGym and ClinVar. These findings demonstrate\nthat DMS is a promising source of sequence diversity and supervised training\ndata for improving the performance of PLMs for variant effect prediction.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.06729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Protein Language Models (PLMs) have emerged as performant and scalable tools for predicting the functional impact and clinical significance of protein-coding variants, but they still lag experimental accuracy. Here, we present a novel fine-tuning approach to improve the performance of PLMs with experimental maps of variant effects from Deep Mutational Scanning (DMS) assays using a Normalised Log-odds Ratio (NLR) head. We find consistent improvements in a held-out protein test set, and on independent DMS and clinical variant annotation benchmarks from ProteinGym and ClinVar. These findings demonstrate that DMS is a promising source of sequence diversity and supervised training data for improving the performance of PLMs for variant effect prediction.
利用深度突变扫描微调蛋白质语言模型,提高变异效应预测能力
蛋白质语言模型(PLMs)已成为预测蛋白质编码变异的功能影响和临床意义的高性能、可扩展的工具,但其准确性仍落后于实验准确性。在这里,我们提出了一种新颖的微调方法,利用归一化对数比率(NLR)头,通过深度突变扫描(DMS)测定的变异效应实验图来提高 PLM 的性能。我们发现,DMS 和来自 ProteinGym 和 ClinVar 的临床变异注释基准在蛋白质测试集、独立 DMS 和临床变异注释基准上都有一致的改进。这些研究结果表明,DMS 是序列多样性和监督训练数据的理想来源,可以提高 PLM 在变异效应预测方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信