Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity

Zhufeng Li, Sandeep S Cranganore, Nicholas Youngblut, Niki Kilbertus
{"title":"Whole Genome Transformer for Gene Interaction Effects in Microbiome Habitat Specificity","authors":"Zhufeng Li, Sandeep S Cranganore, Nicholas Youngblut, Niki Kilbertus","doi":"arxiv-2405.05998","DOIUrl":null,"url":null,"abstract":"Leveraging the vast genetic diversity within microbiomes offers unparalleled\ninsights into complex phenotypes, yet the task of accurately predicting and\nunderstanding such traits from genomic data remains challenging. We propose a\nframework taking advantage of existing large models for gene vectorization to\npredict habitat specificity from entire microbial genome sequences. Based on\nour model, we develop attribution techniques to elucidate gene interaction\neffects that drive microbial adaptation to diverse environments. We train and\nvalidate our approach on a large dataset of high quality microbiome genomes\nfrom different habitats. We not only demonstrate solid predictive performance,\nbut also how sequence-level information of entire genomes allows us to identify\ngene associations underlying complex phenotypes. Our attribution recovers known\nimportant interaction networks and proposes new candidates for experimental\nfollow up.","PeriodicalId":501070,"journal":{"name":"arXiv - QuanBio - Genomics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.05998","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Leveraging the vast genetic diversity within microbiomes offers unparalleled insights into complex phenotypes, yet the task of accurately predicting and understanding such traits from genomic data remains challenging. We propose a framework taking advantage of existing large models for gene vectorization to predict habitat specificity from entire microbial genome sequences. Based on our model, we develop attribution techniques to elucidate gene interaction effects that drive microbial adaptation to diverse environments. We train and validate our approach on a large dataset of high quality microbiome genomes from different habitats. We not only demonstrate solid predictive performance, but also how sequence-level information of entire genomes allows us to identify gene associations underlying complex phenotypes. Our attribution recovers known important interaction networks and proposes new candidates for experimental follow up.
微生物群栖息地特异性中基因相互作用效应的全基因组转化器
利用微生物组中巨大的遗传多样性可以对复杂的表型有无与伦比的洞察力,然而从基因组数据中准确预测和理解这些性状的任务仍然具有挑战性。我们提出了一个框架,利用现有的大型基因载体化模型,从整个微生物基因组序列中预测栖息地特异性。基于我们的模型,我们开发了归因技术,以阐明驱动微生物适应不同环境的基因相互作用效应。我们在来自不同栖息地的大量高质量微生物基因组数据集上训练和验证了我们的方法。我们不仅展示了可靠的预测性能,还展示了整个基因组的序列级信息如何让我们识别复杂表型背后的基因关联。我们的归因恢复了已知的重要相互作用网络,并为后续实验提出了新的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信