The fundamental solution of the master equation for a jump-diffusion Ornstein–Uhlenbeck process

Pub Date : 2024-05-08 DOI:10.1002/mana.202300200
Olga S. Rozanova, Nikolai A. Krutov
{"title":"The fundamental solution of the master equation for a jump-diffusion Ornstein–Uhlenbeck process","authors":"Olga S. Rozanova,&nbsp;Nikolai A. Krutov","doi":"10.1002/mana.202300200","DOIUrl":null,"url":null,"abstract":"<p>An integro-differential equation for the probability density of the generalized stochastic Ornstein–Uhlenbeck process with jump diffusion is considered for a special case of the Laplacian distribution of jumps. It is shown that for a certain ratio between the intensity of jumps and the speed of reversion, the fundamental solution can be found explicitly, as a finite sum. Alternatively, the fundamental solution can be represented as converging power series. The properties of this solution are investigated. The fundamental solution makes it possible to obtain explicit formulas for the density at each instant of time, which is important, for example, for testing numerical methods.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mana.202300200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An integro-differential equation for the probability density of the generalized stochastic Ornstein–Uhlenbeck process with jump diffusion is considered for a special case of the Laplacian distribution of jumps. It is shown that for a certain ratio between the intensity of jumps and the speed of reversion, the fundamental solution can be found explicitly, as a finite sum. Alternatively, the fundamental solution can be represented as converging power series. The properties of this solution are investigated. The fundamental solution makes it possible to obtain explicit formulas for the density at each instant of time, which is important, for example, for testing numerical methods.

分享
查看原文
跃迁扩散奥恩斯坦-乌伦贝克过程主方程的基本解
针对跳跃的拉普拉卡分布这一特殊情况,研究了具有跳跃扩散的广义随机奥恩斯坦-乌伦贝克过程概率密度的积分微分方程。结果表明,当跳跃强度与回归速度之间的比率达到一定程度时,基本解可以以有限和的形式显式求得。或者,基本解可以表示为收敛幂级数。本文对这一解法的特性进行了研究。有了基本解,就有可能获得每一瞬间密度的明确公式,这对于测试数值方法等非常重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信