Blow-up Prevention by Logistic Damping in a Chemotaxis-May-Nowak Model for Virus Infection

IF 1.1 3区 数学 Q1 MATHEMATICS
Yan Li, Qingshan Zhang
{"title":"Blow-up Prevention by Logistic Damping in a Chemotaxis-May-Nowak Model for Virus Infection","authors":"Yan Li, Qingshan Zhang","doi":"10.1007/s00025-024-02183-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the no-flux boundary initial-boundary problem for a three-component reaction-diffusion system originating from the classical May-Nowak model for viral infection </p><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} u_t=\\Delta u-\\chi \\nabla \\cdot (u\\nabla v)+\\kappa -u-uw-\\mu u^{\\alpha },\\\\ v_t=\\Delta v-v+uw,\\\\ w_t=\\Delta w-w+v \\end{array}\\right. } \\end{aligned}$$</span><p>in a smoothly bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^n\\)</span>, <span>\\(n\\ge 1\\)</span>. It is shown that for any <span>\\(\\kappa &gt;0\\)</span>, <span>\\(\\mu &gt;0\\)</span> and sufficiently regular nonnegative initial data <span>\\((u_0,v_0,w_0)\\)</span>, the system possesses a unique nonnegative global bounded classical solution provided </p><span>$$\\begin{aligned} \\alpha &gt;\\frac{n+2}{2}. \\end{aligned}$$</span><p>Moreover, we show the large time behavior of the solution with respect to the size of <span>\\(\\kappa \\)</span>. More precisely, we prove that</p><ul>\n<li>\n<p>if <span>\\(\\kappa &lt;1+\\mu \\)</span>, there exists <span>\\(\\chi _1^*\\)</span> such that if <span>\\(|\\chi |\\le \\chi _1^*\\)</span>, then the solution satisfies </p><span>$$\\begin{aligned} u(\\cdot , t)\\rightarrow u_*,\\ v(\\cdot , t)\\rightarrow 0\\ \\text{ and }\\ w(\\cdot , t)\\rightarrow 0\\quad \\text{ as }\\ t\\rightarrow \\infty \\end{aligned}$$</span><p> in <span>\\(L^{\\infty }(\\Omega )\\)</span> exponentially, where <span>\\(u_*\\)</span> is the solution of algebraic equation </p><span>$$\\begin{aligned} \\kappa -y-\\mu y^{\\alpha }=0; \\end{aligned}$$</span>\n</li>\n<li>\n<p>if <span>\\(\\kappa &gt;1+\\mu \\)</span>, then there exists <span>\\(\\chi _2^*\\)</span> with the property that if <span>\\(|\\chi |\\le \\chi _2^*\\)</span>, then the solution fulfills that </p><span>$$\\begin{aligned} u(\\cdot , t)\\rightarrow 1,\\ v(\\cdot , t)\\rightarrow \\kappa -1-\\mu \\ \\text{ and }\\ w(\\cdot , t)\\rightarrow \\kappa -1-\\mu \\quad \\text{ as }\\ t\\rightarrow \\infty \\end{aligned}$$</span><p> in <span>\\(L^{\\infty }(\\Omega )\\)</span>.</p>\n</li>\n</ul>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02183-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the no-flux boundary initial-boundary problem for a three-component reaction-diffusion system originating from the classical May-Nowak model for viral infection

$$\begin{aligned} {\left\{ \begin{array}{ll} u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+\kappa -u-uw-\mu u^{\alpha },\\ v_t=\Delta v-v+uw,\\ w_t=\Delta w-w+v \end{array}\right. } \end{aligned}$$

in a smoothly bounded domain \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 1\). It is shown that for any \(\kappa >0\), \(\mu >0\) and sufficiently regular nonnegative initial data \((u_0,v_0,w_0)\), the system possesses a unique nonnegative global bounded classical solution provided

$$\begin{aligned} \alpha >\frac{n+2}{2}. \end{aligned}$$

Moreover, we show the large time behavior of the solution with respect to the size of \(\kappa \). More precisely, we prove that

  • if \(\kappa <1+\mu \), there exists \(\chi _1^*\) such that if \(|\chi |\le \chi _1^*\), then the solution satisfies

    $$\begin{aligned} u(\cdot , t)\rightarrow u_*,\ v(\cdot , t)\rightarrow 0\ \text{ and }\ w(\cdot , t)\rightarrow 0\quad \text{ as }\ t\rightarrow \infty \end{aligned}$$

    in \(L^{\infty }(\Omega )\) exponentially, where \(u_*\) is the solution of algebraic equation

    $$\begin{aligned} \kappa -y-\mu y^{\alpha }=0; \end{aligned}$$
  • if \(\kappa >1+\mu \), then there exists \(\chi _2^*\) with the property that if \(|\chi |\le \chi _2^*\), then the solution fulfills that

    $$\begin{aligned} u(\cdot , t)\rightarrow 1,\ v(\cdot , t)\rightarrow \kappa -1-\mu \ \text{ and }\ w(\cdot , t)\rightarrow \kappa -1-\mu \quad \text{ as }\ t\rightarrow \infty \end{aligned}$$

    in \(L^{\infty }(\Omega )\).

在病毒感染的趋化-梅-诺瓦克模型中通过逻辑阻尼防止炸裂
在本文中,我们研究了源于经典梅-诺瓦克病毒感染模型的三分量反应-扩散系统的无流动边界初始-边界问题 $$\begin{aligned} {left\{ \begin{array}{ll} u_t=\Delta u-\chi \nabla \cdot (u\nabla v)+\kappa -u-uw-\mu^\{alpha }、\\ v_t=Delta v-v+uw, w_t=Delta w-w+v end{array}\right.}\end{aligned}$$in a smooth bounded domain \(\Omega \subset {\mathbb {R}}^n\), \(n\ge 1\).结果表明,对于任意的(kappa >0),(mu >0)和足够规则的非负初始数据((u_0,v_0,w_0)),只要有$$\begin{aligned},系统就有一个唯一的非负全局有界经典解。\α >frac{n+2}{2}。\end{aligned}$more, we show the large time behavior of the solution with respect to the size of \(\kappa \)。更准确地说,我们证明了如果 ( (kappa <;1+\mu \),存在 \(\chi_1^*\),这样如果 \(|\chi|\le\chi_1^*\),那么解满足 $$\begin{aligned} u(\cdot , t)\rightarrow u_*,\ v(\cdot , t)\rightarrow 0\text{ and }\ w(\cdot 、在(L^{infty }(\Omega )\$) 是指数式的,其中 (u_*)是代数方程 $$$begin{aligned}的解。\kappa -y-\mu y^{alpha }=0; \end{aligned}$$如果 \(\kappa >;1+\mu \),那么存在 \(\chi_2^*\),其性质是如果 \(|\chi|\le\chi_2^*\),那么解满足 $$\begin{aligned} u(\cdot , t)\rightarrow 1、\ v(\cdot , t)\rightarrow \kappa -1-\mu \text{ and }\ w(\cdot , t)\rightarrow \kappa -1-\mu \quad \text{ as }\ t\rightarrow \infty \end{aligned}$$ in \(L^{infty }(\Omega )\).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信