The Bishop–Phelps–Bollobás Property for Weighted Holomorphic Mappings

IF 1.1 3区 数学 Q1 MATHEMATICS
A. Jiménez-Vargas, M. I. Ramírez, Moisés Villegas-Vallecillos
{"title":"The Bishop–Phelps–Bollobás Property for Weighted Holomorphic Mappings","authors":"A. Jiménez-Vargas, M. I. Ramírez, Moisés Villegas-Vallecillos","doi":"10.1007/s00025-024-02184-6","DOIUrl":null,"url":null,"abstract":"<p>Given an open subset <i>U</i> of a complex Banach space <i>E</i>, a weight <i>v</i> on <i>U</i> and a complex Banach space <i>F</i>, let <span>\\(H^\\infty _v(U,F)\\)</span> denote the Banach space of all weighted holomorphic mappings from <i>U</i> into <i>F</i>, endowed with the weighted supremum norm. We introduce and study a version of the Bishop–Phelps–Bollobás property for <span>\\(H^\\infty _v(U,F)\\)</span> (<span>\\(WH^\\infty \\)</span>-BPB property, for short). A result of Lindenstrauss type with sufficient conditions for <span>\\(H^\\infty _v(U,F)\\)</span> to have the <span>\\(WH^\\infty \\)</span>-BPB property for every space <i>F</i> is stated. This is the case of <span>\\(H^\\infty _{v_p}(\\mathbb {D},F)\\)</span> with <span>\\(p\\ge 1\\)</span>, where <span>\\(v_p\\)</span> is the standard polynomial weight on <span>\\(\\mathbb {D}\\)</span>. The study of the relations of the <span>\\(WH^\\infty \\)</span>-BPB property for the complex and vector-valued cases is also addressed as well as the extension of the cited property for mappings <span>\\(f\\in H^\\infty _v(U,F)\\)</span> such that <i>vf</i> has a relatively compact range in <i>F</i>.</p>","PeriodicalId":54490,"journal":{"name":"Results in Mathematics","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00025-024-02184-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Given an open subset U of a complex Banach space E, a weight v on U and a complex Banach space F, let \(H^\infty _v(U,F)\) denote the Banach space of all weighted holomorphic mappings from U into F, endowed with the weighted supremum norm. We introduce and study a version of the Bishop–Phelps–Bollobás property for \(H^\infty _v(U,F)\) (\(WH^\infty \)-BPB property, for short). A result of Lindenstrauss type with sufficient conditions for \(H^\infty _v(U,F)\) to have the \(WH^\infty \)-BPB property for every space F is stated. This is the case of \(H^\infty _{v_p}(\mathbb {D},F)\) with \(p\ge 1\), where \(v_p\) is the standard polynomial weight on \(\mathbb {D}\). The study of the relations of the \(WH^\infty \)-BPB property for the complex and vector-valued cases is also addressed as well as the extension of the cited property for mappings \(f\in H^\infty _v(U,F)\) such that vf has a relatively compact range in F.

加权全形映射的毕晓普-费尔普斯-波洛巴性质
给定复巴纳赫空间 E 的开放子集 U、U 上的权重 v 和复巴纳赫空间 F,让 \(H^\infty _v(U,F)\)表示从 U 到 F 的所有加权全形映射的巴纳赫空间,并赋予其加权至上规范。我们引入并研究了 \(H^\infty _v(U,F)\) 的毕夏普-费尔普斯-波洛巴斯性质(简称为 \(WH^\infty \)-BPB 性质)。林登斯特劳斯类型的一个结果说明了对于每个空间F来说,\(H^\infty _v(U,F)\) 具有\(WH^\infty\)-BPB性质的充分条件。这是 \(H^\infty _{v_p}(\mathbb {D},F)\) 具有 \(p\ge 1\) 的情况,其中 \(v_p\) 是 \(\mathbb {D}\) 上的标准多项式权重。研究复值和向量值情况下的(WH^\infty \)-BPB 性质的关系,以及对映射 \(f\in H^\infty _v(U,F)\)的引用性质的扩展,使得 vf 在 F 中有一个相对紧凑的范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Mathematics
Results in Mathematics 数学-数学
CiteScore
1.90
自引率
4.50%
发文量
198
审稿时长
6-12 weeks
期刊介绍: Results in Mathematics (RM) publishes mainly research papers in all fields of pure and applied mathematics. In addition, it publishes summaries of any mathematical field and surveys of any mathematical subject provided they are designed to advance some recent mathematical development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信