Genetic-driven biomarkers for liver fibrosis through bioinformatic approach

IF 1.2 Q4 GENETICS & HEREDITY
Ariza Julia Paulina, Y. Vitriyanna Mutiara, Lalu Muhammad Irham, Darmawi Darmawi, Nurul Qiyaam, Firdayani Firdayani, Dian Ayu Eka Pitaloka, Arfianti Arfianti, Wirawan Adikusuma
{"title":"Genetic-driven biomarkers for liver fibrosis through bioinformatic approach","authors":"Ariza Julia Paulina, Y. Vitriyanna Mutiara, Lalu Muhammad Irham, Darmawi Darmawi, Nurul Qiyaam, Firdayani Firdayani, Dian Ayu Eka Pitaloka, Arfianti Arfianti, Wirawan Adikusuma","doi":"10.1186/s43042-024-00528-z","DOIUrl":null,"url":null,"abstract":"Liver fibrosis is a widespread chronic liver ailment linked to substantial mortality and limited therapeutic options. An in-depth comprehension of the genetic underpinnings of liver fibrogenesis is crucial for the development of effective management and treatment approaches. Using bioinformatics tools and the DisGeNET database, we pinpointed 105 genes significantly linked to liver fibrosis. Subsequently, we conducted functional assessments, incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the STRING database, to construct protein–protein interaction networks (PPI) for these 105 liver fibrosis-associated genes. These analyses were executed via the WebGestalt 2019 online platform. We employed Cytoscape plugins, MCODE, and CytoHubba, to identify potential biomarker genes from these functional networks. Noteworthy hub genes encompassed TGF-β1, MMP2, CTNNB1, FGF2, IL6, LOX, CTGF, SMAD3, ALB, and VEGFA. TGF-β1 and MMP-2 exhibited substantial promise as liver fibrosis biomarkers, as denoted by their high systemic scores determined through the MCC algorithm in the CytoHubba methodology. In summary, this study presents a robust genetic biomarker strategy that may prove invaluable in the identification of potential liver fibrosis biomarkers.","PeriodicalId":39112,"journal":{"name":"Egyptian Journal of Medical Human Genetics","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Medical Human Genetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s43042-024-00528-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Liver fibrosis is a widespread chronic liver ailment linked to substantial mortality and limited therapeutic options. An in-depth comprehension of the genetic underpinnings of liver fibrogenesis is crucial for the development of effective management and treatment approaches. Using bioinformatics tools and the DisGeNET database, we pinpointed 105 genes significantly linked to liver fibrosis. Subsequently, we conducted functional assessments, incorporating gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and the STRING database, to construct protein–protein interaction networks (PPI) for these 105 liver fibrosis-associated genes. These analyses were executed via the WebGestalt 2019 online platform. We employed Cytoscape plugins, MCODE, and CytoHubba, to identify potential biomarker genes from these functional networks. Noteworthy hub genes encompassed TGF-β1, MMP2, CTNNB1, FGF2, IL6, LOX, CTGF, SMAD3, ALB, and VEGFA. TGF-β1 and MMP-2 exhibited substantial promise as liver fibrosis biomarkers, as denoted by their high systemic scores determined through the MCC algorithm in the CytoHubba methodology. In summary, this study presents a robust genetic biomarker strategy that may prove invaluable in the identification of potential liver fibrosis biomarkers.
通过生物信息学方法研究肝纤维化的基因驱动生物标志物
肝纤维化是一种广泛存在的慢性肝病,死亡率高且治疗手段有限。深入了解肝纤维化的基因基础对于开发有效的管理和治疗方法至关重要。利用生物信息学工具和 DisGeNET 数据库,我们确定了 105 个与肝纤维化密切相关的基因。随后,我们结合基因本体论(GO)、京都基因与基因组百科全书(KEGG)通路富集分析和 STRING 数据库进行了功能评估,为这 105 个肝纤维化相关基因构建了蛋白质-蛋白质相互作用网络(PPI)。这些分析是通过 WebGestalt 2019 在线平台进行的。我们使用Cytoscape插件、MCODE和CytoHubba从这些功能网络中识别潜在的生物标记基因。值得注意的中心基因包括 TGF-β1、MMP2、CTNNB1、FGF2、IL6、LOX、CTGF、SMAD3、ALB 和 VEGFA。TGF-β1和MMP-2通过CytoHubba方法中的MCC算法确定了较高的系统评分,这表明它们有望成为肝纤维化生物标志物。总之,本研究提出了一种稳健的基因生物标志物策略,可能会被证明在鉴定潜在的肝纤维化生物标志物方面非常有价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Egyptian Journal of Medical Human Genetics
Egyptian Journal of Medical Human Genetics Medicine-Genetics (clinical)
CiteScore
2.20
自引率
7.70%
发文量
150
审稿时长
18 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信