Optimal decay for solutions of nonlocal semilinear equations with critical exponent in homogeneous groups

IF 1.3 3区 数学 Q1 MATHEMATICS
Nicola Garofalo, Annunziata Loiudice, Dimiter Vassilev
{"title":"Optimal decay for solutions of nonlocal semilinear equations with critical exponent in homogeneous groups","authors":"Nicola Garofalo, Annunziata Loiudice, Dimiter Vassilev","doi":"10.1017/prm.2024.58","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the sharp asymptotic decay of positive solutions of the Yamabe type equation <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}_s u=u^{\\frac {Q+2s}{Q-2s}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513091116353-0352:S0308210524000581:S0308210524000581_inline1.png\"/></span></span> in a homogeneous Lie group, where <span><span><span data-mathjax-type=\"texmath\"><span>$\\mathcal {L}_s$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513091116353-0352:S0308210524000581:S0308210524000581_inline2.png\"/></span></span> represents a suitable pseudodifferential operator modelled on a class of nonlocal operators arising in conformal CR geometry.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"206 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.58","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we establish the sharp asymptotic decay of positive solutions of the Yamabe type equation $\mathcal {L}_s u=u^{\frac {Q+2s}{Q-2s}}$Abstract Image in a homogeneous Lie group, where $\mathcal {L}_s$Abstract Image represents a suitable pseudodifferential operator modelled on a class of nonlocal operators arising in conformal CR geometry.

同质群中具有临界指数的非局部半线性方程解的最优衰减
在本文中,我们建立了山边型方程 $\mathcal {L}_s u=u^{\frac {Q+2s}{Q-2s}}$ 在同质李群中的正解的急剧渐近衰减,其中 $\mathcal {L}_s$ 代表一个合适的伪微分算子,以共形 CR 几何中出现的一类非局部算子为模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信