{"title":"A Theory of Alternating Paths and Blossoms from the Perspective of Minimum Length","authors":"Vijay V. Vazirani","doi":"10.1287/moor.2020.0388","DOIUrl":null,"url":null,"abstract":"The Micali–Vazirani (MV) algorithm for finding a maximum cardinality matching in general graphs, which was published in 1980, remains to this day the most efficient known algorithm for the problem. The current paper gives the first complete and correct proof of this algorithm. The MV algorithm resorts to finding minimum-length augmenting paths. However, such paths fail to satisfy an elementary property, called breadth first search honesty in this paper. In the absence of this property, an exponential time algorithm appears to be called for—just for finding one such path. On the other hand, the MV algorithm accomplishes this and additional tasks in linear time. The saving grace is the various “footholds” offered by the underlying structure, which the algorithm uses in order to perform its key tasks efficiently. The theory expounded in this paper elucidates this rich structure and yields a proof of correctness of the algorithm. It may also be of independent interest as a set of well-knit graph-theoretic facts.Funding: This work was supported in part by the National Science Foundation [Grant CCF-2230414].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2020.0388","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Micali–Vazirani (MV) algorithm for finding a maximum cardinality matching in general graphs, which was published in 1980, remains to this day the most efficient known algorithm for the problem. The current paper gives the first complete and correct proof of this algorithm. The MV algorithm resorts to finding minimum-length augmenting paths. However, such paths fail to satisfy an elementary property, called breadth first search honesty in this paper. In the absence of this property, an exponential time algorithm appears to be called for—just for finding one such path. On the other hand, the MV algorithm accomplishes this and additional tasks in linear time. The saving grace is the various “footholds” offered by the underlying structure, which the algorithm uses in order to perform its key tasks efficiently. The theory expounded in this paper elucidates this rich structure and yields a proof of correctness of the algorithm. It may also be of independent interest as a set of well-knit graph-theoretic facts.Funding: This work was supported in part by the National Science Foundation [Grant CCF-2230414].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.