On conformally flat minimal Legendrian submanifolds in the unit sphere

IF 1.3 3区 数学 Q1 MATHEMATICS
Cece Li, Cheng Xing, Jiabin Yin
{"title":"On conformally flat minimal Legendrian submanifolds in the unit sphere","authors":"Cece Li, Cheng Xing, Jiabin Yin","doi":"10.1017/prm.2024.57","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(2n+1)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline1.png\"/> </jats:alternatives> </jats:inline-formula>-dimensional unit sphere <jats:inline-formula> <jats:alternatives> <jats:tex-math>$\\mathbb {S}^{2n+1}$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline2.png\"/> </jats:alternatives> </jats:inline-formula> admitting a Sasakian structure <jats:inline-formula> <jats:alternatives> <jats:tex-math>$(\\varphi,\\,\\xi,\\,\\eta,\\,g)$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline3.png\"/> </jats:alternatives> </jats:inline-formula> for <jats:inline-formula> <jats:alternatives> <jats:tex-math>$n\\ge 3$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline4.png\"/> </jats:alternatives> </jats:inline-formula>, motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor <jats:inline-formula> <jats:alternatives> <jats:tex-math>$K:=-\\varphi h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline5.png\"/> </jats:alternatives> </jats:inline-formula> is semi-parallel, which is introduced as a natural extension of <jats:inline-formula> <jats:alternatives> <jats:tex-math>$C$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline6.png\"/> </jats:alternatives> </jats:inline-formula>-parallel second fundamental form <jats:inline-formula> <jats:alternatives> <jats:tex-math>$h$</jats:tex-math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S030821052400057X_inline7.png\"/> </jats:alternatives> </jats:inline-formula>. Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"66 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/prm.2024.57","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is concerned with the study on an open problem of classifying conformally flat minimal Legendrian submanifolds in the $(2n+1)$ -dimensional unit sphere $\mathbb {S}^{2n+1}$ admitting a Sasakian structure $(\varphi,\,\xi,\,\eta,\,g)$ for $n\ge 3$ , motivated by the classification of minimal Legendrian submanifolds with constant sectional curvature. First of all, we completely classify such Legendrian submanifolds by assuming that the tensor $K:=-\varphi h$ is semi-parallel, which is introduced as a natural extension of $C$ -parallel second fundamental form $h$ . Secondly, such submanifolds have also been determined under the condition that the Ricci tensor is semi-parallel, generalizing the Einstein condition. Finally, as direct consequences, new characterizations of the Calabi torus are presented.
关于单位球面上的保角平坦极小传奇子平面
本文主要研究一个开放问题,即在$(2n+1)$-dimensional单位球$\mathbb {S}^{2n+1}$ 中,在$n\ge 3$的情况下,对保角平坦的极小传奇子满足进行分类,该问题是由具有恒定截面曲率的极小传奇子满足的分类引起的。首先,我们假定张量 $K:=-\varphi h$ 是半平行的,作为 $C$ - 平行第二基本形式 $h$ 的自然扩展引入,从而对这类 Legendrian 子平面进行完全分类。其次,在里奇张量是半平行的条件下,也确定了这种子曼形体,这是对爱因斯坦条件的推广。最后,作为直接结果,提出了卡拉比环形的新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.00
自引率
0.00%
发文量
72
审稿时长
6-12 weeks
期刊介绍: A flagship publication of The Royal Society of Edinburgh, Proceedings A is a prestigious, general mathematics journal publishing peer-reviewed papers of international standard across the whole spectrum of mathematics, but with the emphasis on applied analysis and differential equations. An international journal, publishing six issues per year, Proceedings A has been publishing the highest-quality mathematical research since 1884. Recent issues have included a wealth of key contributors and considered research papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信