Sufficiency of -cyclical monotonicity in a class of multi-marginal optimal transport problems

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Luigi De Pascale, Anna Kausamo
{"title":"Sufficiency of -cyclical monotonicity in a class of multi-marginal optimal transport problems","authors":"Luigi De Pascale, Anna Kausamo","doi":"10.1017/s0956792524000202","DOIUrl":null,"url":null,"abstract":"<p><span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240513153132896-0623:S0956792524000202:S0956792524000202_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c$</span></span></img></span></span>-cyclical monotonicity is the most important optimality condition for an optimal transport plan. While the proof of necessity is relatively easy, the proof of sufficiency is often more difficult or even elusive. We present here a new approach, and we show how known results are derived in this new framework and how this approach allows to prove sufficiency in situations previously not treatable.</p>","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"66 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000202","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image$c$-cyclical monotonicity is the most important optimality condition for an optimal transport plan. While the proof of necessity is relatively easy, the proof of sufficiency is often more difficult or even elusive. We present here a new approach, and we show how known results are derived in this new framework and how this approach allows to prove sufficiency in situations previously not treatable.

一类多边际最优运输问题中周期单调性的充分性
c$周期单调性是最优运输计划最重要的最优性条件。必要性的证明相对容易,但充分性的证明往往比较困难,甚至难以捉摸。我们在此介绍一种新方法,并展示如何在这一新框架下推导出已知结果,以及这种方法如何在以前无法处理的情况下证明充分性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信