Threshold Network GARCH Model

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yue Pan, Jiazhu Pan
{"title":"Threshold Network GARCH Model","authors":"Yue Pan,&nbsp;Jiazhu Pan","doi":"10.1111/jtsa.12743","DOIUrl":null,"url":null,"abstract":"<p>Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12743","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12743","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) model and its variations have been widely adopted in the study of financial volatilities, while the extension of GARCH-type models to high-dimensional data is always difficult because of over-parameterization and computational complexity. In this article, we propose a multi-variate GARCH-type model that can simplify the parameterization by utilizing the network structure that can be appropriately specified for certain types of high-dimensional data. The asymmetry in the dynamics of volatilities is also considered as our model adopts a threshold structure. To enable our model to handle data with extremely high dimension, we investigate the near-epoch dependence (NED) of our model, and the asymptotic properties of our quasi-maximum-likelihood-estimator (QMLE) are derived from the limit theorems for NED random fields. Simulations are conducted to test our theoretical results. At last we fit our model to log-returns of four groups of stocks and the results indicate that bad news is not necessarily more influential on volatility if the network effects are considered.

Abstract Image

阈值网络 GARCH 模型
广义自回归条件异方差(GARCH)模型及其变体已被广泛应用于金融波动率的研究中,而由于参数过多和计算复杂,GARCH 型模型向高维数据的扩展一直是个难题。在本文中,我们提出了一种多变量 GARCH 型模型,该模型可以利用网络结构简化参数化,而网络结构可以适当地指定某些类型的高维数据。由于我们的模型采用了阈值结构,因此还考虑了波动率动态的非对称性。为了使我们的模型能够处理维度极高的数据,我们研究了模型的近时序依赖性(NED),并根据 NED 随机场的极限定理推导出了我们的准最大似然估计器(QMLE)的渐近特性。我们还进行了模拟,以检验我们的理论结果。最后,我们对四组股票的对数收益率拟合了我们的模型,结果表明,如果考虑到网络效应,坏消息对波动性的影响并不一定更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信