Performance Prediction of Aluminum Oxide, Silicon Oxide, and Copper Oxide as Nanoadditives Across Conventional, Semisynthetic, and Synthetic Lubricating Oils Using ANN

IF 2.9 4区 综合性期刊 Q1 Multidisciplinary
Anoop Pratap Singh, Ravi Kumar Dwivedi, Amit Suhane, Prem Kumar Chaurasiya
{"title":"Performance Prediction of Aluminum Oxide, Silicon Oxide, and Copper Oxide as Nanoadditives Across Conventional, Semisynthetic, and Synthetic Lubricating Oils Using ANN","authors":"Anoop Pratap Singh, Ravi Kumar Dwivedi, Amit Suhane, Prem Kumar Chaurasiya","doi":"10.1007/s13369-024-09078-3","DOIUrl":null,"url":null,"abstract":"<p>In the realm of lubrication, nanoparticles play a pivotal role in enhancing the tribological efficacy of lubricating oils. Unveiling a critical need, the research underscores the necessity for a predictive model capable of anticipating these performance characteristics. This research endeavors to fill this gap by introducing an artificial neural network (ANN) tailored specifically for predicting the behavior of nanolubricants. The optimized neural network structure, at 5 × 8 × 2, attains a remarkable minimum mean square error of 0.00046667, with R-values hovering at impressive proximity to unity (0.99828). During the confirmation phase, the neural network's predictions demonstrate a deviation of 7.51% (negative) and 2.87% (negative) for COF, alongside 0.50% and 1.80% for WSD, further affirming its predictive capacity in assessing lubricant performance characteristics.</p>","PeriodicalId":8109,"journal":{"name":"Arabian Journal for Science and Engineering","volume":"39 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal for Science and Engineering","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s13369-024-09078-3","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

In the realm of lubrication, nanoparticles play a pivotal role in enhancing the tribological efficacy of lubricating oils. Unveiling a critical need, the research underscores the necessity for a predictive model capable of anticipating these performance characteristics. This research endeavors to fill this gap by introducing an artificial neural network (ANN) tailored specifically for predicting the behavior of nanolubricants. The optimized neural network structure, at 5 × 8 × 2, attains a remarkable minimum mean square error of 0.00046667, with R-values hovering at impressive proximity to unity (0.99828). During the confirmation phase, the neural network's predictions demonstrate a deviation of 7.51% (negative) and 2.87% (negative) for COF, alongside 0.50% and 1.80% for WSD, further affirming its predictive capacity in assessing lubricant performance characteristics.

Abstract Image

使用 ANN 对作为纳米添加剂的氧化铝、氧化硅和氧化铜在传统、半合成和合成润滑油中的性能进行预测
在润滑领域,纳米粒子在提高润滑油的摩擦学功效方面发挥着举足轻重的作用。这项研究揭示了一个关键需求,即需要一个能够预测这些性能特征的预测模型。本研究通过引入专门用于预测纳米润滑油行为的人工神经网络 (ANN),努力填补这一空白。优化后的神经网络结构(5 × 8 × 2)达到了 0.00046667 的显著最小均方误差,R 值徘徊在令人印象深刻的接近统一值 (0.99828)。在确认阶段,神经网络的预测结果表明 COF 偏差为 7.51%(负值)和 2.87%(负值),WSD 偏差为 0.50%和 1.80%,这进一步肯定了其在评估润滑油性能特征方面的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arabian Journal for Science and Engineering
Arabian Journal for Science and Engineering 综合性期刊-综合性期刊
CiteScore
5.20
自引率
3.40%
发文量
0
审稿时长
4.3 months
期刊介绍: King Fahd University of Petroleum & Minerals (KFUPM) partnered with Springer to publish the Arabian Journal for Science and Engineering (AJSE). AJSE, which has been published by KFUPM since 1975, is a recognized national, regional and international journal that provides a great opportunity for the dissemination of research advances from the Kingdom of Saudi Arabia, MENA and the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信