Numerical Study of Semidiscrete Penalty Approach for Stabilizing Boussinesq System with Localized Feedback Control

Mejdi Azaiez, Kévin Le Balc’h
{"title":"Numerical Study of Semidiscrete Penalty Approach for Stabilizing Boussinesq System with Localized Feedback Control","authors":"Mejdi Azaiez, Kévin Le Balc’h","doi":"10.4208/aam.oa-2024-0013","DOIUrl":null,"url":null,"abstract":"We investigate the numerical approximation for stabilizing the\nsemidiscrete linearized Boussinesq system around an unstable stationary state.\nStabilization is attained through internal feedback controls applied to the velocity and temperature equations, localized within an arbitrary open subset. This\nstudy follows the framework presented in [14], considering the continuous linearized Boussinesq system. The primary objective is to explore the penalization-based approximation of the free divergence condition in the semidiscrete case\nand provide a numerical validation of these results in a two-dimensional setting.","PeriodicalId":517399,"journal":{"name":"Annals of Applied Mathematics","volume":"131 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/aam.oa-2024-0013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the numerical approximation for stabilizing the semidiscrete linearized Boussinesq system around an unstable stationary state. Stabilization is attained through internal feedback controls applied to the velocity and temperature equations, localized within an arbitrary open subset. This study follows the framework presented in [14], considering the continuous linearized Boussinesq system. The primary objective is to explore the penalization-based approximation of the free divergence condition in the semidiscrete case and provide a numerical validation of these results in a two-dimensional setting.
利用局部反馈控制稳定 Boussinesq 系统的半离散惩罚法数值研究
我们研究了使半离散线性化布西内斯克系统在不稳定静态附近稳定的数值近似方法。稳定是通过应用于速度和温度方程的内部反馈控制来实现的,并将其定位在任意开放子集内。本研究沿用 [14] 中提出的框架,考虑连续线性化布森斯克系统。主要目的是探索半离散情况下基于惩罚的自由发散条件近似,并在二维环境中对这些结果进行数值验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信