On a Hybrid Method for Inverse Transmission Eigenvalue Problems

Weishi Yin,Zhaobin Xu,Pinchao Meng, Hongyu Liu
{"title":"On a Hybrid Method for Inverse Transmission Eigenvalue Problems","authors":"Weishi Yin,Zhaobin Xu,Pinchao Meng, Hongyu Liu","doi":"10.4208/aam.oa-2024-0003","DOIUrl":null,"url":null,"abstract":"In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of\na penetrable medium scatterer. The linear sampling method is employed to\ndetermine the transmission eigenvalues within a certain wavenumber interval\nbased on far-field measurements. Based on a prior information given by the\nlinear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals\ninto several subintervals, ensuring that each transmission eigenvalue is located\nin its corresponding subinterval. In each such subinterval, the wavenumber that\nyields the maximum value of the indicator functional will be included in the\ninput set during the generation of the training data. This technique for data\ngeneration effectively ensures the consistent dimensions of model input. The\nrefractive index and shape are taken as the output of the network. Due to the\nfact that transmission eigenvalues considered in our method are relatively small,\ncertain super-resolution effects can also be generated. Numerical experiments\nare presented to verify the effectiveness and promising features of the proposed\nmethod in two and three dimensions.","PeriodicalId":517399,"journal":{"name":"Annals of Applied Mathematics","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4208/aam.oa-2024-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are concerned with the inverse transmission eigenvalue problem to recover the shape as well as the constant refractive index of a penetrable medium scatterer. The linear sampling method is employed to determine the transmission eigenvalues within a certain wavenumber interval based on far-field measurements. Based on a prior information given by the linear sampling method, the neural network approach is proposed for the reconstruction of the unknown scatterer. We divide the wavenumber intervals into several subintervals, ensuring that each transmission eigenvalue is located in its corresponding subinterval. In each such subinterval, the wavenumber that yields the maximum value of the indicator functional will be included in the input set during the generation of the training data. This technique for data generation effectively ensures the consistent dimensions of model input. The refractive index and shape are taken as the output of the network. Due to the fact that transmission eigenvalues considered in our method are relatively small, certain super-resolution effects can also be generated. Numerical experiments are presented to verify the effectiveness and promising features of the proposed method in two and three dimensions.
论逆传输特征值问题的混合方法
本文关注的是反透射特征值问题,以恢复可穿透介质散射体的形状和恒定折射率。在远场测量的基础上,采用线性采样法确定一定波长间隔内的透射特征值。根据线性采样法给出的先验信息,提出了重建未知散射体的神经网络方法。我们将波长区间划分为多个子区间,确保每个传输特征值都位于相应的子区间内。在生成训练数据时,每个子区间中产生指示函数最大值的波长将被纳入输入集。这种数据生成技术有效地确保了模型输入维度的一致性。折射率和形状作为网络的输出。由于我们的方法中考虑的透射特征值相对较小,因此还可以产生一定的超分辨率效应。我们通过数值实验验证了所提方法在二维和三维空间的有效性和前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信