Two-sided Bounds for Renewal Equations and Ruin Quantities

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Stathis Chadjiconsatntinidis
{"title":"Two-sided Bounds for Renewal Equations and Ruin Quantities","authors":"Stathis Chadjiconsatntinidis","doi":"10.1007/s11009-024-10075-0","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the objective is to provide sequences of improved non-increasing (non-decreasing) upper (lower) bounds for the solution of (defective) renewal equations in terms of the right-tail probability of a compound geometric distribution. Exponential (Lundberg type) and non-exponential type bounds are also derived. Also, under several reliability classifications, some new as well as improvements of well-known bounds are given. The results are then applied to obtain refinements of the bounds for several ruin related quantities, (such as the deficit at ruin, the joint distribution of the surplus prior to and at ruin, the mean deficit at ruin and the stop-loss premium, and the compound geometric densities). Bounds for the renewal function are also given.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":"66 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10075-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the objective is to provide sequences of improved non-increasing (non-decreasing) upper (lower) bounds for the solution of (defective) renewal equations in terms of the right-tail probability of a compound geometric distribution. Exponential (Lundberg type) and non-exponential type bounds are also derived. Also, under several reliability classifications, some new as well as improvements of well-known bounds are given. The results are then applied to obtain refinements of the bounds for several ruin related quantities, (such as the deficit at ruin, the joint distribution of the surplus prior to and at ruin, the mean deficit at ruin and the stop-loss premium, and the compound geometric densities). Bounds for the renewal function are also given.

更新方程和废墟量的双侧界限
本文的目的是根据复合几何分布的右尾概率,为(有缺陷的)更新方程的解提供一系列改进的非递增(非递减)上(下)限。此外,还推导出指数型(伦德伯格型)和非指数型边界。此外,在几种可靠性分类下,还给出了一些新的以及对著名界限的改进。然后,应用这些结果对几个与毁损相关的数量(如毁损时的赤字、毁损前和毁损时盈余的联合分布、毁损时的平均赤字和止损溢价以及复合几何密度)的边界进行了改进。此外,还给出了更新函数的界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信